cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A365382 Number of relatively prime integer partitions with sum < n that cannot be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 4, 2, 4, 12, 8, 20, 11, 14, 26, 43, 19, 38, 53, 51, 48, 101, 48, 124, 96, 121, 159, 134, 103, 241, 261, 244, 175, 401, 229, 488, 358, 328
Offset: 0

Views

Author

Gus Wiseman, Sep 08 2023

Keywords

Examples

			The a(11) = 2 through a(18) = 8 partitions:
  (5,4)  .  (6,5)  (6,5)   (7,6)  (7,5)   (7,4)     (7,5)
  (7,3)     (7,4)  (8,5)   (9,4)  (7,6)   (7,6)     (8,7)
            (7,5)  (9,4)          (9,5)   (8,5)     (10,7)
            (8,3)  (10,3)         (11,3)  (8,7)     (11,4)
                                          (9,5)     (11,5)
                                          (9,7)     (12,5)
                                          (10,3)    (13,4)
                                          (11,4)    (7,5,5)
                                          (11,5)
                                          (13,3)
                                          (7,4,4)
                                          (10,3,3)
		

Crossrefs

Relatively prime partitions are counted by A000837, ranks A289509.
This is the relatively prime case of A365378.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, non-strict A364915.
A364839 counts combination-full strict partitions, non-strict A364913.

Programs

  • Mathematica
    combsu[n_,y_]:=With[{s=Table[{k,i},{k,Union[y]},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Join@@IntegerPartitions/@Range[n-1],GCD@@#==1&&combsu[n,#]=={}&]],{n,0,20}]
  • Python
    from math import gcd
    from sympy.utilities.iterables import partitions
    def A365382(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for m in range(1,n) for b in partitions(m) if gcd(*b.keys()) == 1 and not any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023

Extensions

a(21)-a(45) from Chai Wah Wu, Sep 13 2023

A365542 Number of subsets of {1..n-1} that can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 1, 2, 6, 10, 28, 48, 116, 224, 480, 920, 2000, 3840, 7984, 15936, 32320, 63968, 130176, 258304, 521920, 1041664, 2089472, 4171392, 8377856, 16726528, 33509632, 67004416, 134129664, 268111360, 536705024, 1072961536, 2146941952, 4293509120, 8588414976
Offset: 1

Views

Author

Gus Wiseman, Sep 09 2023

Keywords

Examples

			The a(2) = 1 through a(5) = 10 partitions:
  {1}  {1}    {1}      {1}
       {1,2}  {2}      {1,2}
              {1,2}    {1,3}
              {1,3}    {1,4}
              {2,3}    {2,3}
              {1,2,3}  {1,2,3}
                       {1,2,4}
                       {1,3,4}
                       {2,3,4}
                       {1,2,3,4}
		

Crossrefs

The case of positive coefficients is A365042, complement A365045.
For subsets of {1..n} instead of {1..n-1} we have A365073.
The binary complement is A365315.
The complement is counted by A365380.
A124506 and A326083 appear to count combination-free subsets.
A179822 and A326080 count sum-closed subsets.
A364350 counts combination-free strict partitions.
A364914 and A365046 count combination-full subsets.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n-1]],combs[n,#]!={}&]],{n,5}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A365542(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for m in range(1,n) for b in combinations(range(1,n),m) if any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 12 2023

Extensions

More terms from Alois P. Heinz, Sep 13 2023

A365323 Number of integer partitions with sum < n whose distinct parts cannot be linearly combined using all positive coefficients to obtain n.

Original entry on oeis.org

0, 0, 1, 1, 4, 3, 9, 7, 15, 16, 29, 23, 47, 43, 74, 65, 114, 100, 174, 153, 257, 228, 368, 312, 530, 454, 736, 645, 1025, 902, 1402, 1184, 1909, 1626, 2618, 2184, 3412, 2895, 4551, 3887, 5966, 5055, 7796, 6509, 10244, 8462, 13060, 10881, 16834, 14021, 21471
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2023

Keywords

Examples

			The partition y = (3,3,2) has distinct parts {2,3}, and we have 9 = 3*2 + 1*3, so y is not counted under a(9).
The a(3) = 1 through a(10) = 16 partitions:
  (2)  (3)  (2)    (4)    (2)      (3)    (2)        (3)
            (3)    (5)    (3)      (5)    (4)        (4)
            (4)    (3,2)  (4)      (6)    (5)        (6)
            (2,2)         (5)      (7)    (6)        (7)
                          (6)      (3,3)  (7)        (8)
                          (2,2)    (4,3)  (8)        (9)
                          (3,3)    (5,2)  (2,2)      (3,3)
                          (4,2)           (4,2)      (4,4)
                          (2,2,2)         (4,3)      (5,2)
                                          (4,4)      (5,3)
                                          (5,3)      (5,4)
                                          (6,2)      (6,3)
                                          (2,2,2)    (7,2)
                                          (4,2,2)    (3,3,3)
                                          (2,2,2,2)  (4,3,2)
                                                     (5,2,2)
		

Crossrefs

Complement for subsets: A088314 or A365042, nonnegative A365073 or A365542.
For strict partitions we have A088528, nonnegative coefficients A365312.
For length-2 subsets we have A365321 (we use n instead of n-1).
For subsets we have A365322 or A365045, nonnegative coefficients A365380.
For nonnegative coefficients we have A365378, complement A365379.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, non-strict A364915.
A364839 counts combination-full strict partitions, non-strict A364913.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Join@@IntegerPartitions/@Range[n-1],combp[n,Union[#]]=={}&]],{n,10}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365323(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for k in range(1,n) for d in partitions(k) if tuple(sorted(set(d))) not in a) # Chai Wah Wu, Sep 12 2023

Extensions

a(21)-a(51) from Chai Wah Wu, Sep 12 2023
Previous Showing 21-23 of 23 results.