cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A370811 Numbers such that more than one set can be obtained by choosing a different divisor of each prime index.

Original entry on oeis.org

3, 5, 7, 11, 13, 14, 15, 17, 19, 21, 23, 26, 29, 31, 33, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 65, 67, 69, 70, 71, 73, 74, 77, 78, 79, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 105, 106, 107, 109, 111, 113, 114, 115, 117, 119
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2024

Keywords

Comments

A prime index of k is a number m such that prime(m) divides k. The multiset of prime indices of k is row k of A112798.

Examples

			The prime indices of 70 are {1,3,4}, with choices (1,3,4) and (1,3,2), so 70 is in the sequence.
The terms together with their prime indices begin:
     3: {2}      43: {14}        79: {22}       115: {3,9}
     5: {3}      46: {1,9}       83: {23}       117: {2,2,6}
     7: {4}      47: {15}        85: {3,7}      119: {4,7}
    11: {5}      49: {4,4}       86: {1,14}     122: {1,18}
    13: {6}      51: {2,7}       87: {2,10}     123: {2,13}
    14: {1,4}    53: {16}        89: {24}       127: {31}
    15: {2,3}    55: {3,5}       91: {4,6}      129: {2,14}
    17: {7}      57: {2,8}       93: {2,11}     130: {1,3,6}
    19: {8}      58: {1,10}      94: {1,15}     131: {32}
    21: {2,4}    59: {17}        95: {3,8}      133: {4,8}
    23: {9}      61: {18}        97: {25}       137: {33}
    26: {1,6}    65: {3,6}      101: {26}       138: {1,2,9}
    29: {10}     67: {19}       103: {27}       139: {34}
    31: {11}     69: {2,9}      105: {2,3,4}    141: {2,15}
    33: {2,5}    70: {1,3,4}    106: {1,16}     142: {1,20}
    35: {3,4}    71: {20}       107: {28}       143: {5,6}
    37: {12}     73: {21}       109: {29}       145: {3,10}
    38: {1,8}    74: {1,12}     111: {2,12}     146: {1,21}
    39: {2,6}    77: {4,5}      113: {30}       149: {35}
    41: {13}     78: {1,2,6}    114: {1,2,8}    151: {36}
		

Crossrefs

For no choices we have A355740, counted by A370320.
For at least one choice we have A368110, counted by A239312.
Partitions of this type are counted by A370803.
For a unique choice we have A370810, counted by A370595 and A370815.
A000005 counts divisors.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741, A355744, A355745 choose prime factors of prime indices.
A370814 counts factorizations with choosable divisors, complement A370813.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Union[Sort /@ Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]]]>1&]

A370817 Greatest number of multisets that can be obtained by choosing a prime factor of each factor in an integer factorization of n into unordered factors > 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 07 2024

Keywords

Comments

First differs from A096825 at a(210) = 4, A096825(210) = 6.
First differs from A343943 at a(210) = 4, A343943(210) = 6.
First differs from A345926 at a(90) = 4, A345926(90) = 3.

Examples

			For the factorizations of 60 we have the following choices (using prime indices {1,2,3} instead of prime factors {2,3,5}):
  (2*2*3*5): {{1,1,2,3}}
   (2*2*15): {{1,1,2},{1,1,3}}
   (2*3*10): {{1,1,2},{1,2,3}}
    (2*5*6): {{1,1,3},{1,2,3}}
    (3*4*5): {{1,2,3}}
     (2*30): {{1,1},{1,2},{1,3}}
     (3*20): {{1,2},{2,3}}
     (4*15): {{1,2},{1,3}}
     (5*12): {{1,3},{2,3}}
     (6*10): {{1,1},{1,2},{1,3},{2,3}}
       (60): {{1},{2},{3}}
So a(60) = 4.
		

Crossrefs

For all divisors (not just prime factors) we have A370816.
The version for partitions is A370809, for all divisors A370808.
A000005 counts divisors.
A001055 counts factorizations, strict A045778.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 chooses prime factors of prime indices, variations A355744, A355745.
A368413 counts non-choosable factorizations, complement A368414.
A370813 counts non-divisor-choosable factorizations, complement A370814.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Max[Length[Union[Sort/@Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#]]]&/@facs[n]],{n,100}]

A387136 Number of ways to choose a sequence of distinct prime factors, one of each prime index of 2n - 1.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 0, 0, 2, 1, 1, 1, 2, 1, 1, 2, 0, 2, 0, 1, 1, 1, 0, 1, 2, 0, 1, 1, 1, 2, 2, 0, 1, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 2, 1, 0, 2, 1, 1, 3, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 2, 2, 2, 0, 2, 2, 0, 1, 1, 0, 1, 2, 1, 2, 2, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Aug 30 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 4537 are {6,70}, with choices (2,5), (2,7), (3,2), (3,5), (3,7). Since 4537 = 2 * 2269 - 1, we have a(2269) = 5.
		

Crossrefs

Here we use the version with alternating zeros (put n instead of 2n - 1 in the name).
Twice partitions of this type are counted by A296122.
Positions of zero are A355529, complement A368100.
For divisors instead of prime factors we have A355739.
Allowing repeated choices gives A355741.
For partitions instead of prime factors we have A387110.
For initial intervals instead of prime factors we have A387111.
For strict partitions instead of prime factors we have A387115, disjoint case A383706.
For constant partitions instead of prime factors we have A387120.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together prime indices.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@prix[2n-1]],UnsameQ@@#&]],{n,100}]

A370588 Number of subsets of {1..n} containing n such that only one set can be obtained by choosing a different prime factor of each element.

Original entry on oeis.org

0, 0, 1, 2, 2, 6, 6, 18, 12, 20, 36, 104, 76, 284, 320, 408, 252, 1548, 872, 3968, 2800, 4704, 8568, 24008, 10832, 14832, 40688, 18240, 43632, 176240, 97344, 449824, 95328, 404992, 760752, 698864, 436464, 3296048, 3564576, 4057904, 2677776, 16892352, 8676576
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Comments

For example, the only choice of a different prime factor of each element of (4,5,6) is (2,5,3), so {4,5,6} is counted under a(6).

Examples

			The a(0) = 0 through a(8) = 12 subsets:
  .  .  {2}  {3}    {4}    {5}      {2,6}    {7}        {8}
             {2,3}  {3,4}  {2,5}    {3,6}    {2,7}      {3,8}
                           {3,5}    {4,6}    {3,7}      {5,8}
                           {4,5}    {2,5,6}  {4,7}      {6,8}
                           {2,3,5}  {3,5,6}  {5,7}      {7,8}
                           {3,4,5}  {4,5,6}  {2,3,7}    {3,5,8}
                                             {2,5,7}    {3,7,8}
                                             {2,6,7}    {5,6,8}
                                             {3,4,7}    {5,7,8}
                                             {3,5,7}    {6,7,8}
                                             {3,6,7}    {3,5,7,8}
                                             {4,5,7}    {5,6,7,8}
                                             {4,6,7}
                                             {2,3,5,7}
                                             {2,5,6,7}
                                             {3,4,5,7}
                                             {3,5,6,7}
                                             {4,5,6,7}
		

Crossrefs

First differences of A370584, cf. A370582, complement A370583.
For any number of choices we have A370586, complement A370587.
For binary indices see A370638, A370639, complement A370589.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370585 counts maximal choosable sets.
A370592 counts choosable partitions, complement A370593.
A370636 counts choosable subsets for binary indices, complement A370637.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==1&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A370590 Number of maximal subsets of {1..n} containing n such that it is possible to choose a different prime factor of each element (choosable).

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 3, 5, 2, 4, 14, 25, 13, 38, 46, 66, 28, 178, 57, 235, 106, 238, 656, 1235, 288, 445, 2192, 664, 2016, 6840, 2300, 9140, 888, 6236, 17692, 14724, 7320, 56000, 60472, 70252, 37160, 223884, 66428, 290312, 113172, 80544, 517392, 1001420, 114336
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Comments

For example, the set {4,7,9,10} has choice (2,7,3,5) so is counted under a(10).

Examples

			The a(0) = 0 through a(10) = 14 subsets (A = 10):
  .  .  2  23  34  235  256  2357  3578  2579  237A
                   345  356  2567  5678  4579  267A
                        456  3457        5679  279A
                             3567        5789  347A
                             4567              357A
                                               367A
                                               378A
                                               467A
                                               479A
                                               567A
                                               579A
                                               678A
                                               679A
                                               789A
		

Crossrefs

Not requiring n gives A370585, maximal case of A370582, complement A370583.
Maximal case of A370586, complement A370587, unique A370588.
An opposite version is A370591.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370592 counts choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n],{PrimePi[n]}],MemberQ[#,n]&&Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#],UnsameQ@@#&]]>0&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A387180 Numbers of which it is not possible to choose a different constant integer partition of each prime index.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 125, 128, 132, 135, 136, 140, 144, 148, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 200, 204
Offset: 1

Views

Author

Gus Wiseman, Aug 30 2025

Keywords

Comments

First differs from A276079 in having 125.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers n with at least one prime index k such that the multiplicity of prime(k) in the prime factorization of n exceeds the number of divisors of k.

Examples

			The prime indices of 60 are {1,1,2,3}, and we have the following 4 choices of constant partitions:
  ((1),(1),(2),(3))
  ((1),(1),(2),(1,1,1))
  ((1),(1),(1,1),(3))
  ((1),(1),(1,1),(1,1,1))
Since none of these is strict, 60 is in the sequence.
The prime indices of 90 are {1,2,2,3}, and we have the following 4 strict choices:
  ((1),(2),(1,1),(3))
  ((1),(2),(1,1),(1,1,1))
  ((1),(1,1),(2),(3))
  ((1),(1,1),(2),(1,1,1))
So 90 is not in the sequence.
		

Crossrefs

For prime factors instead of constant partitions we have A355529, counted by A370593.
For divisors instead of constant partitions we have A355740, counted by A370320.
The complement for prime factors is A368100, counted by A370592.
The complement for divisors is A368110, counted by A239312.
The complement for initial intervals is A387112, counted by A238873.
For initial intervals instead of partitions we have A387113, counted by A387118.
These are the positions of zero in A387120.
For strict instead of constant partitions we have A387176, counted by A387137.
The complement for strict partitions is A387177, counted by A387178.
Twice-partitions of this type are counted by A387179, constant-block case of A296122.
The complement is A387181 (nonzeros of A387120), counted by A387330.
Partitions of this type are counted by A387329.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together prime indices.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@prix[#]],UnsameQ@@#&]=={}&]

A387328 Number of integer partitions of n whose parts have choosable sets of integer partitions.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 17, 22, 28, 36, 46, 58, 73, 91, 114, 141, 174, 214, 262, 320, 389, 472, 571, 688, 828, 993, 1189, 1419, 1690, 2009, 2383, 2821, 3334, 3931, 4628, 5439, 6381, 7474, 8741, 10207, 11902, 13858, 16114, 18710, 21698, 25130, 29070
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2025

Keywords

Comments

First differs from A052335 at A052335(20) = 173, a(20) = 174, corresponding to the partition (4,4,4,4,4).
a(n) is the number of integer partitions of n such that it is possible to choose a sequence of distinct integer partitions, one of each part.
Also the number of integer partitions y of n with no part k whose multiplicity in y exceeds A000041(k).

Examples

			The a(1) = 1 through a(9) = 13 partitions:
  (1)  (2)  (3)   (4)   (5)    (6)    (7)    (8)     (9)
            (21)  (22)  (32)   (33)   (43)   (44)    (54)
                  (31)  (41)   (42)   (52)   (53)    (63)
                        (221)  (51)   (61)   (62)    (72)
                               (321)  (322)  (71)    (81)
                                      (331)  (332)   (333)
                                      (421)  (422)   (432)
                                             (431)   (441)
                                             (521)   (522)
                                             (3221)  (531)
                                                     (621)
                                                     (3321)
                                                     (4221)
		

Crossrefs

The strict case is A000009.
For initial intervals instead of partitions we have A238873, complement A387118.
For divisors instead of partitions we have A239312, complement A370320.
For prime factors instead of partitions we have A370592, ranks A368100.
The complement for prime factors is A370593, ranks A355529.
The complement is counted by A387134, ranks A387577.
For sets of strict partitions we have A387178, complement A387137.
These partitions are ranked by A387576.
A000005 counts divisors.
A000041 counts integer partitions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[IntegerPartitions/@#],UnsameQ@@#&]!={}&]],{n,0,15}]
Previous Showing 21-27 of 27 results.