cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-68 of 68 results.

A387113 Numbers whose prime indices do not have (strictly) choosable initial intervals.

Original entry on oeis.org

4, 8, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 100, 104, 108, 112, 116, 120, 124, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192
Offset: 1

Views

Author

Gus Wiseman, Aug 24 2025

Keywords

Comments

The initial interval of a nonnegative integer x is the set {1,...,x}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We say that a set or sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1,2,3},{1},{1,3},{2}) is not.
This sequence lists all numbers k such that if the prime indices of k are (x1,x2,...,xz), then the sequence of sets (initial intervals) ({1,...,x1},{1,...,x2},...,{1,...,xz}) is not choosable.

Examples

			The prime indices of 18 are {1,2,2}, with initial intervals ({1},{1,2},{1,2}), which have choices (1,1,1), (1,1,2), (1,2,1), (1,2,2), and since none of these are strict, 18 is in the sequence.
The prime indices of 85 are {3,7}, with initial intervals {{1,2,3},{1,2,3,4,5,6,7}}, which are choosable, so 85 is in not the sequence.
The prime indices of 90 are {1,2,2,3}, with initial intervals {{1},{1,2},{1,2},{1,2,3}}, which are not choosable, so 90 is in the sequence.
The terms together with their prime indices begin:
    4: {1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   48: {1,1,1,1,2}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

For partitions instead of initial intervals we have A276079, complement A276078.
For prime factors instead of initial intervals we have A355529, complement A368100.
For divisors instead of initial intervals we have A355740, complement A368110.
These are the positions of 0 in A387111, complement A387134.
The complement is A387112.
Partitions of this type are counted by A387118, complement A238873.
For strict partitions instead of initial intervals we have A387137, complement A387176.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A367902 counts choosable set-systems, complement A367903.
A370582 counts sets with choosable prime factors, complement A370583.
A370585 counts maximal subsets with choosable prime factors.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Range/@prix[#]],UnsameQ@@#&]=={}&]

A387136 Number of ways to choose a sequence of distinct prime factors, one of each prime index of 2n - 1.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 0, 0, 2, 1, 1, 1, 2, 1, 1, 2, 0, 2, 0, 1, 1, 1, 0, 1, 2, 0, 1, 1, 1, 2, 2, 0, 1, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 2, 1, 0, 2, 1, 1, 3, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 2, 2, 2, 0, 2, 2, 0, 1, 1, 0, 1, 2, 1, 2, 2, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Aug 30 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 4537 are {6,70}, with choices (2,5), (2,7), (3,2), (3,5), (3,7). Since 4537 = 2 * 2269 - 1, we have a(2269) = 5.
		

Crossrefs

Here we use the version with alternating zeros (put n instead of 2n - 1 in the name).
Twice partitions of this type are counted by A296122.
Positions of zero are A355529, complement A368100.
For divisors instead of prime factors we have A355739.
Allowing repeated choices gives A355741.
For partitions instead of prime factors we have A387110.
For initial intervals instead of prime factors we have A387111.
For strict partitions instead of prime factors we have A387115, disjoint case A383706.
For constant partitions instead of prime factors we have A387120.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together prime indices.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@prix[2n-1]],UnsameQ@@#&]],{n,100}]

A370588 Number of subsets of {1..n} containing n such that only one set can be obtained by choosing a different prime factor of each element.

Original entry on oeis.org

0, 0, 1, 2, 2, 6, 6, 18, 12, 20, 36, 104, 76, 284, 320, 408, 252, 1548, 872, 3968, 2800, 4704, 8568, 24008, 10832, 14832, 40688, 18240, 43632, 176240, 97344, 449824, 95328, 404992, 760752, 698864, 436464, 3296048, 3564576, 4057904, 2677776, 16892352, 8676576
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Comments

For example, the only choice of a different prime factor of each element of (4,5,6) is (2,5,3), so {4,5,6} is counted under a(6).

Examples

			The a(0) = 0 through a(8) = 12 subsets:
  .  .  {2}  {3}    {4}    {5}      {2,6}    {7}        {8}
             {2,3}  {3,4}  {2,5}    {3,6}    {2,7}      {3,8}
                           {3,5}    {4,6}    {3,7}      {5,8}
                           {4,5}    {2,5,6}  {4,7}      {6,8}
                           {2,3,5}  {3,5,6}  {5,7}      {7,8}
                           {3,4,5}  {4,5,6}  {2,3,7}    {3,5,8}
                                             {2,5,7}    {3,7,8}
                                             {2,6,7}    {5,6,8}
                                             {3,4,7}    {5,7,8}
                                             {3,5,7}    {6,7,8}
                                             {3,6,7}    {3,5,7,8}
                                             {4,5,7}    {5,6,7,8}
                                             {4,6,7}
                                             {2,3,5,7}
                                             {2,5,6,7}
                                             {3,4,5,7}
                                             {3,5,6,7}
                                             {4,5,6,7}
		

Crossrefs

First differences of A370584, cf. A370582, complement A370583.
For any number of choices we have A370586, complement A370587.
For binary indices see A370638, A370639, complement A370589.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370585 counts maximal choosable sets.
A370592 counts choosable partitions, complement A370593.
A370636 counts choosable subsets for binary indices, complement A370637.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==1&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A370590 Number of maximal subsets of {1..n} containing n such that it is possible to choose a different prime factor of each element (choosable).

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 3, 5, 2, 4, 14, 25, 13, 38, 46, 66, 28, 178, 57, 235, 106, 238, 656, 1235, 288, 445, 2192, 664, 2016, 6840, 2300, 9140, 888, 6236, 17692, 14724, 7320, 56000, 60472, 70252, 37160, 223884, 66428, 290312, 113172, 80544, 517392, 1001420, 114336
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Comments

For example, the set {4,7,9,10} has choice (2,7,3,5) so is counted under a(10).

Examples

			The a(0) = 0 through a(10) = 14 subsets (A = 10):
  .  .  2  23  34  235  256  2357  3578  2579  237A
                   345  356  2567  5678  4579  267A
                        456  3457        5679  279A
                             3567        5789  347A
                             4567              357A
                                               367A
                                               378A
                                               467A
                                               479A
                                               567A
                                               579A
                                               678A
                                               679A
                                               789A
		

Crossrefs

Not requiring n gives A370585, maximal case of A370582, complement A370583.
Maximal case of A370586, complement A370587, unique A370588.
An opposite version is A370591.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370592 counts choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n],{PrimePi[n]}],MemberQ[#,n]&&Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#],UnsameQ@@#&]]>0&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A387178 Number of integer partitions of n whose parts have choosable sets of strict integer partitions.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 6, 8, 10, 13, 17, 21, 27, 34, 42, 53, 65, 80, 98, 119, 146, 177, 213, 258, 309, 370, 443, 528, 628, 745, 882, 1043, 1229, 1447, 1700, 1993, 2333, 2727, 3182, 3707, 4311, 5008, 5808, 6727, 7782, 8990, 10371, 11952, 13756, 15815, 18161
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2025

Keywords

Comments

First differs from A052337 in having 745 instead of 746.
We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.
a(n) is the number of integer partitions of n such that it is possible to choose a sequence of distinct strict integer partitions of each part.
Also the number of integer partitions of n with no part k whose multiplicity exceeds A000009(k).

Examples

			The partition y = (3,3,2) has sets of strict integer partitions ({(2,1),(3)},{(2,1),(3)},{(2)}), and we have the choice ((2,1),(3),(2)) or ((3),(2,1),(2)), so y is counted under a(8).
The a(1) = 1 through a(9) = 10 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)      (9)
            (2,1)  (3,1)  (3,2)  (3,3)    (4,3)    (4,4)    (5,4)
                          (4,1)  (4,2)    (5,2)    (5,3)    (6,3)
                                 (5,1)    (6,1)    (6,2)    (7,2)
                                 (3,2,1)  (3,3,1)  (7,1)    (8,1)
                                          (4,2,1)  (3,3,2)  (4,3,2)
                                                   (4,3,1)  (4,4,1)
                                                   (5,2,1)  (5,3,1)
                                                            (6,2,1)
                                                            (3,3,2,1)
		

Crossrefs

For initial intervals instead of strict partitions we have A238873, ranks A387112.
For divisors instead of strict partitions we have A239312, ranks A368110.
The complement for divisors is A370320, ranks A355740.
For prime factors instead of strict partitions we have A370592, ranks A368100.
The complement for prime factors is A370593, ranks A355529.
The complement for initial intervals is A387118, ranks A387113.
The complement for all partitions is A387134, ranks A387577.
The complement is counted by A387137, ranks A387176.
These partitions are ranked by A387177.
For all partitions instead of just strict partitions we have A387328, ranks A387576.
The complement for constant partitions is A387329, ranks A387180.
For constant partitions instead of strict partitions we have A387330, ranks A387181.
A000041 counts integer partitions, strict A000009.
A358914 counts twice-partitions into distinct strict partitions.
A367902 counts choosable set-systems, complement A367903.

Programs

  • Mathematica
    strptns[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[strptns/@#],UnsameQ@@#&]!={}&]],{n,0,15}]

A387180 Numbers of which it is not possible to choose a different constant integer partition of each prime index.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 125, 128, 132, 135, 136, 140, 144, 148, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 200, 204
Offset: 1

Views

Author

Gus Wiseman, Aug 30 2025

Keywords

Comments

First differs from A276079 in having 125.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers n with at least one prime index k such that the multiplicity of prime(k) in the prime factorization of n exceeds the number of divisors of k.

Examples

			The prime indices of 60 are {1,1,2,3}, and we have the following 4 choices of constant partitions:
  ((1),(1),(2),(3))
  ((1),(1),(2),(1,1,1))
  ((1),(1),(1,1),(3))
  ((1),(1),(1,1),(1,1,1))
Since none of these is strict, 60 is in the sequence.
The prime indices of 90 are {1,2,2,3}, and we have the following 4 strict choices:
  ((1),(2),(1,1),(3))
  ((1),(2),(1,1),(1,1,1))
  ((1),(1,1),(2),(3))
  ((1),(1,1),(2),(1,1,1))
So 90 is not in the sequence.
		

Crossrefs

For prime factors instead of constant partitions we have A355529, counted by A370593.
For divisors instead of constant partitions we have A355740, counted by A370320.
The complement for prime factors is A368100, counted by A370592.
The complement for divisors is A368110, counted by A239312.
The complement for initial intervals is A387112, counted by A238873.
For initial intervals instead of partitions we have A387113, counted by A387118.
These are the positions of zero in A387120.
For strict instead of constant partitions we have A387176, counted by A387137.
The complement for strict partitions is A387177, counted by A387178.
Twice-partitions of this type are counted by A387179, constant-block case of A296122.
The complement is A387181 (nonzeros of A387120), counted by A387330.
Partitions of this type are counted by A387329.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together prime indices.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@prix[#]],UnsameQ@@#&]=={}&]

A370646 Number of non-isomorphic multiset partitions of weight n such that only one set can be obtained by choosing a different element of each block.

Original entry on oeis.org

1, 1, 2, 4, 10, 23, 62, 165, 475, 1400, 4334
Offset: 0

Views

Author

Gus Wiseman, Mar 12 2024

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets. The weight of a multiset partition is the sum of cardinalities of its elements.

Examples

			The multiset partition {{3},{1,3},{2,3}} has unique choice (3,1,2) so is counted under a(5).
Representatives of the a(1) = 1 through a(5) = 23 multiset partitions:
  {1}  {11}    {111}      {1111}        {11111}
       {1}{2}  {1}{22}    {1}{122}      {11}{122}
               {2}{12}    {11}{22}      {1}{1222}
               {1}{2}{3}  {12}{12}      {11}{222}
                          {1}{222}      {12}{122}
                          {12}{22}      {1}{2222}
                          {2}{122}      {12}{222}
                          {1}{2}{33}    {2}{1122}
                          {1}{3}{23}    {2}{1222}
                          {1}{2}{3}{4}  {22}{122}
                                        {1}{2}{233}
                                        {1}{22}{33}
                                        {1}{23}{23}
                                        {1}{2}{333}
                                        {1}{23}{33}
                                        {1}{3}{233}
                                        {2}{12}{33}
                                        {2}{13}{23}
                                        {2}{3}{123}
                                        {3}{13}{23}
                                        {1}{2}{3}{44}
                                        {1}{2}{4}{34}
                                        {1}{2}{3}{4}{5}
		

Crossrefs

For existence we have A368098, complement A368097.
Multisets of this type are ranked by A368101, see also A368100, A355529.
Subsets of this type are counted by A370584, see also A370582, A370583.
Maximal sets of this type are counted by A370585.
Partitions of this type are counted by A370594, see also A370592, A370593.
Subsets of this type are also counted by A370638, see also A370636, A370637.
Factorizations of this type are A370645, see also A368414, A368413.
Set-systems of this type are A370818, see also A367902, A367903.
A000110 counts set partitions, non-isomorphic A000041.
A001055 counts factorizations, strict A045778.
A007716 counts non-isomorphic multiset partitions, connected A007718.

A387328 Number of integer partitions of n whose parts have choosable sets of integer partitions.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 17, 22, 28, 36, 46, 58, 73, 91, 114, 141, 174, 214, 262, 320, 389, 472, 571, 688, 828, 993, 1189, 1419, 1690, 2009, 2383, 2821, 3334, 3931, 4628, 5439, 6381, 7474, 8741, 10207, 11902, 13858, 16114, 18710, 21698, 25130, 29070
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2025

Keywords

Comments

First differs from A052335 at A052335(20) = 173, a(20) = 174, corresponding to the partition (4,4,4,4,4).
a(n) is the number of integer partitions of n such that it is possible to choose a sequence of distinct integer partitions, one of each part.
Also the number of integer partitions y of n with no part k whose multiplicity in y exceeds A000041(k).

Examples

			The a(1) = 1 through a(9) = 13 partitions:
  (1)  (2)  (3)   (4)   (5)    (6)    (7)    (8)     (9)
            (21)  (22)  (32)   (33)   (43)   (44)    (54)
                  (31)  (41)   (42)   (52)   (53)    (63)
                        (221)  (51)   (61)   (62)    (72)
                               (321)  (322)  (71)    (81)
                                      (331)  (332)   (333)
                                      (421)  (422)   (432)
                                             (431)   (441)
                                             (521)   (522)
                                             (3221)  (531)
                                                     (621)
                                                     (3321)
                                                     (4221)
		

Crossrefs

The strict case is A000009.
For initial intervals instead of partitions we have A238873, complement A387118.
For divisors instead of partitions we have A239312, complement A370320.
For prime factors instead of partitions we have A370592, ranks A368100.
The complement for prime factors is A370593, ranks A355529.
The complement is counted by A387134, ranks A387577.
For sets of strict partitions we have A387178, complement A387137.
These partitions are ranked by A387576.
A000005 counts divisors.
A000041 counts integer partitions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[IntegerPartitions/@#],UnsameQ@@#&]!={}&]],{n,0,15}]
Previous Showing 61-68 of 68 results.