cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A369146 Number of unlabeled loop-graphs with up to n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 1, 8, 60, 471, 4911, 78797, 2207405, 113740613, 10926218807, 1956363413115, 652335084532025, 405402273420833338, 470568642161119515627, 1023063423471189429817807, 4178849203082023236054797465, 32168008290073542372004072630072, 468053896898117580623237189882068990
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2024

Keywords

Examples

			The a(0) = 0 through a(3) = 8 loop-graphs (loops shown as singletons):
  .  .  {{1},{2},{1,2}}  {{1},{2},{1,2}}
                         {{1},{2},{3},{1,2}}
                         {{1},{2},{1,2},{1,3}}
                         {{1},{2},{1,3},{2,3}}
                         {{1},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3}}
                         {{1},{2},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Without the choice condition we have A000666, labeled A006125 (shifted).
For a unique choice we have A087803, labeled A088957.
The case without loops is A140637, labeled A367867 (covering A367868).
For exactly n edges we have A368835, labeled A368596.
The labeled complement is A368927, covering A369140.
The labeled version is A369141, covering A369142.
The complement is counted by A369145, covering A369200.
The covering case is A369147.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A129271 counts connected choosable simple graphs, unlabeled A005703.
A322661 counts labeled covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Select[Tuples[#],UnsameQ@@#&]=={}&]]],{n,0,4}]

Formula

Partial sums of A369147.
a(n) = A000666(n) - A369145(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(6) onwards from Andrew Howroyd, Feb 02 2024

A368924 Triangle read by rows where T(n,k) is the number of labeled loop-graphs on n vertices with k loops and n-k non-loops such that it is possible to choose a different vertex from each edge.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 1, 9, 6, 1, 15, 68, 48, 12, 1, 222, 720, 510, 150, 20, 1, 3670, 9738, 6825, 2180, 360, 30, 1, 68820, 159628, 110334, 36960, 6895, 735, 42, 1, 1456875, 3067320, 2090760, 721560, 145530, 17976, 1344, 56, 1, 34506640, 67512798, 45422928, 15989232, 3402756, 463680, 40908, 2268, 72, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Triangle begins:
      1
      0      1
      0      2      1
      1      9      6      1
     15     68     48     12      1
    222    720    510    150     20      1
   3670   9738   6825   2180    360     30      1
  68820 159628 110334  36960   6895    735     42      1
Row n = 3 counts the following loop-graphs:
  {{1,2},{1,3},{2,3}}  {{1},{1,2},{1,3}}  {{1},{2},{1,3}}  {{1},{2},{3}}
                       {{1},{1,2},{2,3}}  {{1},{2},{2,3}}
                       {{1},{1,3},{2,3}}  {{1},{3},{1,2}}
                       {{2},{1,2},{1,3}}  {{1},{3},{2,3}}
                       {{2},{1,2},{2,3}}  {{2},{3},{1,2}}
                       {{2},{1,3},{2,3}}  {{2},{3},{1,3}}
                       {{3},{1,2},{1,3}}
                       {{3},{1,2},{2,3}}
                       {{3},{1,3},{2,3}}
		

Crossrefs

Column k = n-1 is A002378.
The case of a unique choice is A061356, row sums A000272.
Column k = 0 is A137916, unlabeled version A137917.
Row sums appear to be A333331.
The complement has row sums A368596, covering case A368730.
The unlabeled version is A368926.
Without the choice condition we have A368928, A116508, A367863, A368597.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts loop-graphs, unlabeled A000666.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]],{n,0,5},{k,0,n}]
  • PARI
    T(n)={my(t=-lambertw(-x + O(x*x^n))); [Vecrev(p) | p <- Vec(serlaplace(exp(-log(1-t)/2 - t/2 + t*y - t^2/4)))]}
    { my(A=T(8)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 14 2024

Formula

E.g.f.: A(x,y) = exp(-log(1-T(x))/2 - T(x)/2 + y*T(x) - T(x)^2/4) where T(x) = -LambertW(-x) is the e.g.f. of A000169. - Andrew Howroyd, Jan 14 2024

Extensions

a(36) onwards from Andrew Howroyd, Jan 14 2024

A369145 Number of unlabeled loop-graphs with up to n vertices such that it is possible to choose a different vertex from each edge (choosable).

Original entry on oeis.org

1, 2, 5, 12, 30, 73, 185, 467, 1207, 3147, 8329, 22245, 60071, 163462, 448277, 1236913, 3432327, 9569352, 26792706, 75288346, 212249873, 600069431, 1700826842, 4831722294, 13754016792, 39224295915, 112048279650, 320563736148, 918388655873, 2634460759783, 7566000947867
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2024

Keywords

Comments

a(n) is the number of graphs with loops on n unlabeled vertices with every connected component having no more edges than vertices. - Andrew Howroyd, Feb 02 2024

Examples

			The a(0) = 1 through a(3) = 12 loop-graphs (loops shown as singletons):
  {}  {}     {}           {}
      {{1}}  {{1}}        {{1}}
             {{1,2}}      {{1,2}}
             {{1},{2}}    {{1},{2}}
             {{1},{1,2}}  {{1},{1,2}}
                          {{1},{2,3}}
                          {{1,2},{1,3}}
                          {{1},{2},{3}}
                          {{1},{2},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

Without the choice condition we get A000666, labeled A006125 (shifted left).
The case of a unique choice is A087803, labeled A088957.
Without loops we have A134964, labeled A133686 (covering A367869).
For exactly n edges and no loops we have A137917, labeled A137916.
The labeled version is A368927, covering A369140.
The labeled complement is A369141, covering A369142.
For exactly n edges we have A368984, labeled A333331 (maybe).
The complement for exactly n edges is A368835, labeled A368596.
The complement is counted by A369146, labeled A369141 (covering A369142).
The covering case is A369200.
The complement for exactly n edges and no loops is A369201, labeled A369143.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A129271 counts connected choosable simple graphs, unlabeled A005703.
A322661 counts labeled covering loop-graphs, unlabeled A322700.
A367867 counts non-choosable labeled graphs, covering A367868.
A368927 counts choosable labeled loop-graphs, covering A369140.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]]],{n,0,4}]

Formula

Partial sums of A369200.
Euler transform of A369289. - Andrew Howroyd, Feb 02 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 02 2024

A369196 Number of labeled loop-graphs with n vertices and at most as many edges as covered vertices.

Original entry on oeis.org

1, 2, 7, 39, 320, 3584, 51405, 900947, 18661186, 445827942, 12062839691, 364451604095, 12157649050827, 443713171974080, 17583351295466338, 751745326170662049, 34485624653535808340, 1689485711682987916502, 88030098291829749593643, 4860631073631586486397141
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Examples

			The a(0) = 1 through a(2) = 7 loop-graphs:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1,2}}
             {{1},{2}}
             {{1},{1,2}}
             {{2},{1,2}}
		

Crossrefs

The version counting all vertices is A066383, without loops A369192.
The loopless case is A369193, with case of equality A367862.
The covering case is A369194, connected A369197, minimal case A001862.
The case of equality is A369198, covering case A368597.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts simple graphs, also loop-graphs if shifted left.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A322661 counts covering loop-graphs, unlabeled A322700.
A368927 counts choosable loop-graphs, covering A369140.
A369141 counts non-choosable loop-graphs, covering A369142.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]],Length[#]<=Length[Union@@#]&]],{n,0,5}]

Formula

Binomial transform of A369194.

A370169 Number of unlabeled loop-graphs covering n vertices with at most n edges.

Original entry on oeis.org

1, 1, 3, 7, 19, 48, 135, 373, 1085, 3184, 9590, 29258, 90833, 285352, 908006, 2919953, 9487330, 31111997, 102934602, 343389708, 1154684849, 3912345408, 13353796977, 45906197103, 158915480378, 553897148543, 1943627750652, 6865605601382, 24411508473314, 87364180212671, 314682145679491
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2024

Keywords

Examples

			The a(0) = 1 through a(4) = 19 loop-graph edge sets (loops shown as singletons):
  {}  {{1}}  {{1,2}}      {{1},{2,3}}          {{1,2},{3,4}}
             {{1},{2}}    {{1,2},{1,3}}        {{1},{2},{3,4}}
             {{1},{1,2}}  {{1},{2},{3}}        {{1},{1,2},{3,4}}
                          {{1},{2},{1,3}}      {{1},{2,3},{2,4}}
                          {{1},{1,2},{1,3}}    {{1},{2},{3},{4}}
                          {{1},{1,2},{2,3}}    {{1,2},{1,3},{1,4}}
                          {{1,2},{1,3},{2,3}}  {{1,2},{1,3},{2,4}}
                                               {{1},{2},{3},{1,4}}
                                               {{1},{2},{1,2},{3,4}}
                                               {{1},{2},{1,3},{1,4}}
                                               {{1},{2},{1,3},{2,4}}
                                               {{1},{2},{1,3},{3,4}}
                                               {{1},{1,2},{1,3},{1,4}}
                                               {{1},{1,2},{1,3},{2,4}}
                                               {{1},{1,2},{2,3},{2,4}}
                                               {{1},{1,2},{2,3},{3,4}}
                                               {{1},{2,3},{2,4},{3,4}}
                                               {{1,2},{1,3},{1,4},{2,3}}
                                               {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

The case of equality is A368599, covering case of A368598.
The labeled version is A369194, covering case of A066383.
This is the covering case of A370168.
The loopless version is the covering case of A370315, labeled A369192.
This is the loopless version is A370316, labeled A369191.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A322661 counts covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n]&&Length[#]<=n&]]],{n,0,5}]
  • PARI
    \\ G defined in A070166.
    a(n)=my(A=O(x*x^n)); if(n==0, 1, polcoef((G(n,A)-G(n-1,A))/(1-x), n)) \\ Andrew Howroyd, Feb 19 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 19 2024

A369147 Number of unlabeled loop-graphs covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 1, 7, 52, 411, 4440, 73886, 2128608, 111533208, 10812478194, 1945437194308, 650378721118910, 404749938336301313, 470163239887698682289, 1022592854829028310302180, 4177826139658552046624979658, 32163829440870460348768017832607, 468021728889827507080865185809438918
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2024

Keywords

Examples

			The a(0) = 0 through a(3) = 7 loop-graphs (loops shown as singletons):
  .  .  {{1},{2},{1,2}}  {{1},{2},{3},{1,2}}
                         {{1},{2},{1,2},{1,3}}
                         {{1},{2},{1,3},{2,3}}
                         {{1},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3}}
                         {{1},{2},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Without the choice condition we have A322700, labeled A322661.
The complement for exactly n edges is A368984, labeled A333331 (maybe).
The labeled complement is A369140, covering case of A368927.
The labeled version is A369142, covering case of A369141.
This is the covering case of A369146.
The complement is counted by A369200, covering case of A369145.
Without loops we have A369202, covering case of A140637.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs, labeled A006125 (shifted left).
A002494 counts unlabeled covering graphs, labeled A006129.
A007716 counts non-isomorphic multiset partitions, connected A007718.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]]],{n,0,4}]

Formula

First differences of A369146.
a(n) = A322700(n) - A369200(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(6) onwards from Andrew Howroyd, Feb 02 2024

A369200 Number of unlabeled loop-graphs covering n vertices such that it is possible to choose a different vertex from each edge (choosable).

Original entry on oeis.org

1, 1, 3, 7, 18, 43, 112, 282, 740, 1940, 5182, 13916, 37826, 103391, 284815, 788636, 2195414, 6137025, 17223354, 48495640, 136961527, 387819558, 1100757411, 3130895452, 8922294498, 25470279123, 72823983735, 208515456498, 597824919725, 1716072103910, 4931540188084
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2024

Keywords

Comments

These are covering loop-graphs with at most one cycle (unicyclic) in each connected component.

Examples

			Representatives of the a(1) = 1 through a(4) = 18 loop-graphs (loops shown as singletons):
  {{1}}  {{1,2}}      {{1},{2,3}}          {{1,2},{3,4}}
         {{1},{2}}    {{1,2},{1,3}}        {{1},{2},{3,4}}
         {{1},{1,2}}  {{1},{2},{3}}        {{1},{1,2},{3,4}}
                      {{1},{2},{1,3}}      {{1},{2,3},{2,4}}
                      {{1},{1,2},{1,3}}    {{1},{2},{3},{4}}
                      {{1},{1,2},{2,3}}    {{1,2},{1,3},{1,4}}
                      {{1,2},{1,3},{2,3}}  {{1,2},{1,3},{2,4}}
                                           {{1},{2},{3},{1,4}}
                                           {{1},{2},{1,3},{1,4}}
                                           {{1},{2},{1,3},{2,4}}
                                           {{1},{2},{1,3},{3,4}}
                                           {{1},{1,2},{1,3},{1,4}}
                                           {{1},{1,2},{1,3},{2,4}}
                                           {{1},{1,2},{2,3},{2,4}}
                                           {{1},{1,2},{2,3},{3,4}}
                                           {{1},{2,3},{2,4},{3,4}}
                                           {{1,2},{1,3},{1,4},{2,3}}
                                           {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

Without the choice condition we have A322700, labeled A322661.
Without loops we have A368834, covering case of A134964.
For exactly n edges we have A368984, labeled A333331 (maybe).
The labeled version is A369140, covering case of A368927.
The labeled complement is A369142, covering case of A369141.
This is the covering case of A369145.
The complement is counted by A369147, covering case of A369146.
The complement without loops is A369202, covering case of A140637.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs, labeled A006125 (shifted left).
A006129 counts covering graphs, unlabeled A002494.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A129271 counts connected choosable simple graphs, unlabeled A005703.
A133686 counts choosable labeled graphs, covering A367869.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n]&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]]],{n,0,4}]

Formula

First differences of A369145.
Euler transform of A369289 with A369289(1) = 1. - Andrew Howroyd, Feb 02 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 02 2024

A370168 Number of unlabeled loop-graphs with n vertices and at most n edges.

Original entry on oeis.org

1, 2, 5, 13, 36, 102, 313, 994, 3318, 11536, 41748, 156735, 609973, 2456235, 10224216, 43946245, 194866898, 890575047, 4190997666, 20289434813, 100952490046, 515758568587, 2703023502100, 14518677321040, 79852871813827, 449333028779385, 2584677513933282
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2024

Keywords

Examples

			The a(0) = 1 through a(3) = 13 loop-graph edge sets (loops shown as singletons):
  {}  {}     {}           {}
      {{1}}  {{1}}        {{1}}
             {{1,2}}      {{1,2}}
             {{1},{2}}    {{1},{2}}
             {{1},{1,2}}  {{1},{1,2}}
                          {{1},{2,3}}
                          {{1,2},{1,3}}
                          {{1},{2},{3}}
                          {{1},{2},{1,2}}
                          {{1},{2},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

The labeled version is A066383, covering A369194.
The case of equality is A368598, covering A368599.
The covering case is A370169, labeled A369194.
The loopless version is A370315, labeled A369192.
The covering loopless version is A370316, labeled A369191.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A322661 counts covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n], {1,2}]],Length[#]<=n&]]],{n,0,5}]
  • PARI
    a(n)=my(A=O(x*x^n)); if(n==0, 1, polcoef(G(n, A)/(1-x), n)) \\ G defined in A070166. - Andrew Howroyd, Feb 19 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 19 2024

A368926 Triangle read by rows where T(n,k) is the number of unlabeled loop-graphs on n vertices with k loops and n-k non-loops such that it is possible to choose a different element from each edge.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 1, 1, 2, 5, 3, 1, 1, 5, 12, 7, 3, 1, 1, 14, 29, 19, 8, 3, 1, 1, 35, 75, 47, 21, 8, 3, 1, 1, 97, 191, 127, 54, 22, 8, 3, 1, 1, 264, 504, 331, 149, 56, 22, 8, 3, 1, 1, 733, 1339, 895, 395, 156, 57, 22, 8, 3, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2024

Keywords

Comments

Also the number of unlabeled loop-graphs covering n vertices with k loops and n-k non-loops such that each connected component has the same number of edges as vertices.

Examples

			Triangle begins:
   1
   0  1
   0  1  1
   1  2  1  1
   2  5  3  1  1
   5 12  7  3  1  1
  14 29 19  8  3  1  1
  35 75 47 21  8  3  1  1
		

Crossrefs

The case of a unique choice is A106234, row sums A000081.
Column k = 0 is A137917, labeled version A137916.
Without the choice condition we have A368836.
The labeled version is A368924, row sums maybe A333331.
Row sums are A368984, complement A368835.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts loop-graphs, unlabeled A000666.
A322661 counts labeled covering half-loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Union[sysnorm /@ Select[Subsets[Subsets[Range[n],{1,2}],{n}],Count[#,{_}]==k && Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]], {n,0,5},{k,0,n}]
  • PARI
    \\ TreeGf gives gf of A000081; G(n,1) is gf of A368983.
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    G(n,y)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); 1 + (sum(d=1, n, eulerphi(d)/d*log(1/(1-g(d)))) + ((1+g(1))^2/(1-g(2))-1)/2 - (g(1)^2 + g(2)))/2 + (y-1)*g(1)}
    EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))}
    T(n)={[Vecrev(p) | p <- Vec(EulerMTS(G(n,y) - 1))]}
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 14 2024

Extensions

a(36) onwards from Andrew Howroyd, Jan 14 2024

A368928 Triangle read by rows where T(n,k) is the number of labeled loop-graphs with n vertices and n edges, k of which are loops.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 1, 9, 9, 1, 15, 80, 90, 24, 1, 252, 1050, 1200, 450, 50, 1, 5005, 18018, 20475, 9100, 1575, 90, 1, 116280, 379848, 427329, 209475, 46550, 4410, 147, 1, 3108105, 9472320, 10548720, 5503680, 1433250, 183456, 10584, 224, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2024

Keywords

Examples

			Triangle begins:
     1
     0     1
     0     2     1
     1     9     9     1
    15    80    90    24     1
   252  1050  1200   450    50     1
  5005 18018 20475  9100  1575    90     1
The loop-graphs counted in row n = 3 (loops shown as singletons):
  {12}{13}{23}  {1}{12}{13}  {1}{2}{12}  {1}{2}{3}
                {1}{12}{23}  {1}{2}{13}
                {1}{13}{23}  {1}{2}{23}
                {2}{12}{13}  {1}{3}{12}
                {2}{12}{23}  {1}{3}{13}
                {2}{13}{23}  {1}{3}{23}
                {3}{12}{13}  {2}{3}{12}
                {3}{12}{23}  {2}{3}{13}
                {3}{13}{23}  {2}{3}{23}
		

Crossrefs

Row sums are A014068, unlabeled version A000666.
Column k = 0 is A116508, covering version A367863.
The covering case is A368597.
The unlabeled version is A368836.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.
A322661 counts labeled covering loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n], {1,2}],{n}],Count[#,{_}]==k&]],{n,0,5},{k,0,n}]
    T[n_,k_]:= Binomial[n,k]*Binomial[Binomial[n,2],n-k]; Table[T[n,k],{n,0,8},{k,0,n}]// Flatten (* Stefano Spezia, Jan 14 2024 *)
  • PARI
    T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k) \\ Andrew Howroyd, Jan 14 2024

Formula

T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k).
Previous Showing 11-20 of 22 results. Next