cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A370647 Numbers such that only one set can be obtained by choosing a different prime factor of each prime index.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 23, 31, 33, 35, 39, 41, 51, 53, 55, 59, 65, 67, 69, 77, 83, 85, 87, 91, 93, 95, 97, 103, 109, 111, 119, 123, 127, 129, 131, 155, 157, 161, 165, 169, 177, 179, 183, 185, 187, 191, 201, 203, 205, 209, 211, 213, 217, 227, 235, 237, 241
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 91 are {4,6}, with only choice {2,3}, so 91 is in the sequence.
The terms together with their prime indices begin:
     1: {}        53: {16}      109: {29}
     3: {2}       55: {3,5}     111: {2,12}
     5: {3}       59: {17}      119: {4,7}
     7: {4}       65: {3,6}     123: {2,13}
    11: {5}       67: {19}      127: {31}
    15: {2,3}     69: {2,9}     129: {2,14}
    17: {7}       77: {4,5}     131: {32}
    19: {8}       83: {23}      155: {3,11}
    23: {9}       85: {3,7}     157: {37}
    31: {11}      87: {2,10}    161: {4,9}
    33: {2,5}     91: {4,6}     165: {2,3,5}
    35: {3,4}     93: {2,11}    169: {6,6}
    39: {2,6}     95: {3,8}     177: {2,17}
    41: {13}      97: {25}      179: {41}
    51: {2,7}    103: {27}      183: {2,18}
		

Crossrefs

For nonexistence we have A355529, count A370593.
For binary instead of prime indices we have A367908, counted by A367904.
For existence we have A368100, count A370592.
For a sequence instead of set of factors we have A368101.
The version for subsets is A370584, see also A370582, A370583.
Maximal sets of this type are counted by A370585.
Partitions of this type are counted by A370594.
For subsets and binary indices we have A370638.
The version for factorizations is A370645, see also A368414, A368413.
For divisors instead of factors we have A370810, counted by A370595.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts ways to choose a prime factor of each prime index.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Union[Sort /@ Select[Tuples[prix/@prix[#]],UnsameQ@@#&]]]==1&]

A370809 Greatest number of multisets that can be obtained by choosing a prime factor of each part of an integer partition of n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 4, 4, 6, 4, 6, 6, 6, 6, 8, 6, 8, 8, 9, 8, 10, 9, 12, 10, 12, 12, 12, 12, 16, 13, 16, 16, 18, 16, 20, 18, 20, 20, 24, 20, 24, 24, 24, 26, 30, 26, 30, 30, 32, 32, 36, 32, 36, 36, 40, 38, 42, 40, 45, 44, 48
Offset: 0

Views

Author

Gus Wiseman, Mar 05 2024

Keywords

Examples

			For the partition (10,6,3,2) there are 4 choices: {2,2,2,3}, {2,2,3,3}, {2,2,3,5}, {2,3,3,5} so a(21) >= 4.
For the partitions of 6 we have the following choices:
  (6): {{2},{3}}
  (51): {}
  (42): {{2,2}}
  (411): {}
  (33): {{3,3}}
  (321): {}
  (3111): {}
  (222): {{2,2,2}}
  (2211): {}
  (21111): {}
  (111111): {}
So a(6) = 2.
		

Crossrefs

For just all divisors (not just prime factors) we have A370808.
The version for factorizations is A370817, for all divisors A370816.
A000041 counts integer partitions, strict A000009.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741, A355744, A355745 choose prime factors of prime indices.
A368413 counts non-choosable factorizations, complement A368414.
A370320 counts non-condensed partitions, ranks A355740.
A370592, A370593, A370594, `A370807 count non-choosable partitions.

Programs

  • Mathematica
    Table[Max[Length[Union[Sort /@ Tuples[If[#==1,{},First/@FactorInteger[#]]& /@ #]]]&/@IntegerPartitions[n]],{n,0,30}]

Extensions

Terms a(31) onward from Max Alekseyev, Sep 17 2024

A387118 Number of integer partitions of n without choosable initial intervals.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 6, 8, 13, 19, 28, 37, 52, 70, 97, 130, 172, 224, 293, 378, 492, 630, 806, 1018, 1286, 1609, 2019, 2514, 3131, 3874, 4784
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2025

Keywords

Comments

The initial interval of a nonnegative integer x is the set {1,...,x}.
We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.

Examples

			The partition y = (2,2,1) has initial intervals ({1,2},{1,2},{1}), which are not choosable, so y is counted under a(5).
The a(2) = 1 through a(8) = 13 partitions:
  (11)  (111)  (211)   (221)    (222)     (511)      (611)
               (1111)  (311)    (411)     (2221)     (2222)
                       (2111)   (2211)    (3211)     (3221)
                       (11111)  (3111)    (4111)     (3311)
                                (21111)   (22111)    (4211)
                                (111111)  (31111)    (5111)
                                          (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

The complement is counted by A238873, ranks A387112.
The complement for divisors is A239312, ranks A368110.
For divisors instead of initial intervals we have A370320, ranks A355740.
The complement for prime factors is A370592, ranks A368100.
For prime factors instead of initial intervals we have A370593, ranks A355529.
These partitions have ranks A387113.
For partitions instead of initial intervals we have A387134.
The complement for partitions is A387328.
For strict partitions instead of initial intervals we have A387137, ranks A387176.
The complement for strict partitions is A387178.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A367902 counts choosable set-systems, complement A367903.
A370582 counts sets with choosable prime factors, complement A370583.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[Range/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

A370807 Number of integer partitions of n into parts > 1 such that it is not possible to choose a different prime factor of each part.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 3, 1, 4, 4, 8, 9, 15, 17, 25, 30, 43, 54, 72, 87, 115, 139, 181, 224, 283, 342, 429, 519, 647, 779, 967
Offset: 0

Views

Author

Gus Wiseman, Mar 04 2024

Keywords

Examples

			The a(0) = 0 through a(11) = 9 partitions:
  .  .  .  .  (22)  .  (33)   (322)  (44)    (333)   (55)     (443)
                       (42)          (332)   (432)   (82)     (533)
                       (222)         (422)   (522)   (433)    (542)
                                     (2222)  (3222)  (442)    (632)
                                                     (622)    (722)
                                                     (3322)   (3332)
                                                     (4222)   (4322)
                                                     (22222)  (5222)
                                                              (32222)
		

Crossrefs

These partitions are ranked by the odd terms of A355529, complement A368100.
The version for set-systems is A367903, complement A367902.
The version for factorizations is A368413, complement A368414.
With ones allowed we have A370593, complement A370592.
For a unique choice we have A370594, ranks A370647.
The version for divisors instead of factors is A370804, complement A370805.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A239312 counts condensed partitions, ranks A368110.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1] && Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#],UnsameQ@@#&]]==0&]],{n,0,30}]

A370811 Numbers such that more than one set can be obtained by choosing a different divisor of each prime index.

Original entry on oeis.org

3, 5, 7, 11, 13, 14, 15, 17, 19, 21, 23, 26, 29, 31, 33, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 65, 67, 69, 70, 71, 73, 74, 77, 78, 79, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 105, 106, 107, 109, 111, 113, 114, 115, 117, 119
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2024

Keywords

Comments

A prime index of k is a number m such that prime(m) divides k. The multiset of prime indices of k is row k of A112798.

Examples

			The prime indices of 70 are {1,3,4}, with choices (1,3,4) and (1,3,2), so 70 is in the sequence.
The terms together with their prime indices begin:
     3: {2}      43: {14}        79: {22}       115: {3,9}
     5: {3}      46: {1,9}       83: {23}       117: {2,2,6}
     7: {4}      47: {15}        85: {3,7}      119: {4,7}
    11: {5}      49: {4,4}       86: {1,14}     122: {1,18}
    13: {6}      51: {2,7}       87: {2,10}     123: {2,13}
    14: {1,4}    53: {16}        89: {24}       127: {31}
    15: {2,3}    55: {3,5}       91: {4,6}      129: {2,14}
    17: {7}      57: {2,8}       93: {2,11}     130: {1,3,6}
    19: {8}      58: {1,10}      94: {1,15}     131: {32}
    21: {2,4}    59: {17}        95: {3,8}      133: {4,8}
    23: {9}      61: {18}        97: {25}       137: {33}
    26: {1,6}    65: {3,6}      101: {26}       138: {1,2,9}
    29: {10}     67: {19}       103: {27}       139: {34}
    31: {11}     69: {2,9}      105: {2,3,4}    141: {2,15}
    33: {2,5}    70: {1,3,4}    106: {1,16}     142: {1,20}
    35: {3,4}    71: {20}       107: {28}       143: {5,6}
    37: {12}     73: {21}       109: {29}       145: {3,10}
    38: {1,8}    74: {1,12}     111: {2,12}     146: {1,21}
    39: {2,6}    77: {4,5}      113: {30}       149: {35}
    41: {13}     78: {1,2,6}    114: {1,2,8}    151: {36}
		

Crossrefs

For no choices we have A355740, counted by A370320.
For at least one choice we have A368110, counted by A239312.
Partitions of this type are counted by A370803.
For a unique choice we have A370810, counted by A370595 and A370815.
A000005 counts divisors.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741, A355744, A355745 choose prime factors of prime indices.
A370814 counts factorizations with choosable divisors, complement A370813.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Union[Sort /@ Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]]]>1&]

A387134 Number of integer partitions of n whose parts do not have choosable sets of integer partitions.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 6, 8, 12, 17, 25, 34, 49, 65, 89, 118, 158, 206, 271, 349, 453, 578, 740, 935, 1186, 1486, 1865, 2322, 2890, 3572, 4415, 5423, 6659, 8134, 9927, 12062, 14643, 17706, 21387, 25746, 30957, 37109, 44433, 53054, 63273, 75276, 89444, 106044
Offset: 0

Views

Author

Gus Wiseman, Aug 29 2025

Keywords

Comments

Number of integer partitions of n such that it is not possible to choose a sequence of distinct integer partitions, one of each part.
Also the number of integer partitions of n with at least one part k satisfying that the multiplicity of k exceeds the number of integer partitions of k.

Examples

			The a(2) = 1 through a(8) = 12 partitions:
  (11)  (111)  (211)   (311)    (222)     (511)      (611)
               (1111)  (2111)   (411)     (2221)     (2222)
                       (11111)  (2211)    (3211)     (3311)
                                (3111)    (4111)     (4211)
                                (21111)   (22111)    (5111)
                                (111111)  (31111)    (22211)
                                          (211111)   (32111)
                                          (1111111)  (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

These partitions are ranked by A276079.
For divisors instead of partitions we have A370320, complement A239312.
The complement for prime factors is A370592, ranks A368100.
For prime factors instead of partitions we have A370593, ranks A355529.
For initial intervals instead of partitions we have A387118, complement A238873.
For just choices of strict partitions we have A387137.
The complement is counted by A387328, ranks A276078.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Select[Tuples[IntegerPartitions/@#],UnsameQ@@#&]]==0&]],{n,0,15}]

A370815 Number of integer factorizations of n into unordered factors > 1, such that only one set can be obtained by choosing a different divisor of each factor.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2024

Keywords

Examples

			The a(432) = 3 factorizations: (2*2*3*4*9), (2*3*3*4*6), (2*6*6*6).
		

Crossrefs

For partitions and prime factors we have A370594, ranks A370647.
Partitions of this type are counted by A370595, ranks A370810.
For prime factors we have A370645, subsets A370584.
A000005 counts divisors.
A001055 counts factorizations, strict A045778.
A239312 counts condensed partitions, ranks A355740, complement A370320.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A368414 counts factor-choosable factorizations, complement A368413.
A370814 counts divisor-choosable factorizations, complement A370813.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Length[Union[Sort /@ Select[Tuples[Divisors/@#],UnsameQ@@#&]]]==1&]],{n,100}]

A370646 Number of non-isomorphic multiset partitions of weight n such that only one set can be obtained by choosing a different element of each block.

Original entry on oeis.org

1, 1, 2, 4, 10, 23, 62, 165, 475, 1400, 4334
Offset: 0

Views

Author

Gus Wiseman, Mar 12 2024

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets. The weight of a multiset partition is the sum of cardinalities of its elements.

Examples

			The multiset partition {{3},{1,3},{2,3}} has unique choice (3,1,2) so is counted under a(5).
Representatives of the a(1) = 1 through a(5) = 23 multiset partitions:
  {1}  {11}    {111}      {1111}        {11111}
       {1}{2}  {1}{22}    {1}{122}      {11}{122}
               {2}{12}    {11}{22}      {1}{1222}
               {1}{2}{3}  {12}{12}      {11}{222}
                          {1}{222}      {12}{122}
                          {12}{22}      {1}{2222}
                          {2}{122}      {12}{222}
                          {1}{2}{33}    {2}{1122}
                          {1}{3}{23}    {2}{1222}
                          {1}{2}{3}{4}  {22}{122}
                                        {1}{2}{233}
                                        {1}{22}{33}
                                        {1}{23}{23}
                                        {1}{2}{333}
                                        {1}{23}{33}
                                        {1}{3}{233}
                                        {2}{12}{33}
                                        {2}{13}{23}
                                        {2}{3}{123}
                                        {3}{13}{23}
                                        {1}{2}{3}{44}
                                        {1}{2}{4}{34}
                                        {1}{2}{3}{4}{5}
		

Crossrefs

For existence we have A368098, complement A368097.
Multisets of this type are ranked by A368101, see also A368100, A355529.
Subsets of this type are counted by A370584, see also A370582, A370583.
Maximal sets of this type are counted by A370585.
Partitions of this type are counted by A370594, see also A370592, A370593.
Subsets of this type are also counted by A370638, see also A370636, A370637.
Factorizations of this type are A370645, see also A368414, A368413.
Set-systems of this type are A370818, see also A367902, A367903.
A000110 counts set partitions, non-isomorphic A000041.
A001055 counts factorizations, strict A045778.
A007716 counts non-isomorphic multiset partitions, connected A007718.
Previous Showing 11-18 of 18 results.