cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A375927 Numbers k such that A005117(k+1) - A005117(k) = 1. In other words, the k-th squarefree number is 1 less than the next.

Original entry on oeis.org

1, 2, 4, 5, 7, 9, 10, 14, 15, 18, 19, 21, 22, 24, 25, 27, 28, 30, 35, 36, 38, 40, 41, 43, 44, 46, 48, 49, 51, 53, 54, 58, 59, 62, 63, 65, 66, 68, 69, 71, 72, 74, 76, 79, 80, 82, 84, 85, 87, 88, 90, 94, 96, 97, 101, 102, 105, 107, 108, 110, 111, 113, 114, 116
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2024

Keywords

Comments

The asymptotic density of this sequence is Product_{p prime} (1 - 1/(p^2-1)) = 0.53071182... (A065469). - Amiram Eldar, Sep 15 2024

Examples

			The squarefree numbers are 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ... which first increase by one after terms 1, 2, 4, 5, ...
		

Crossrefs

Positions of 1's in A076259.
For prime-powers (A246655) we have A375734.
First differences are A373127.
For nonsquarefree instead of squarefree we have A375709.
For nonprime numbers we have A375926, differences A373403.
For composite numbers we have A375929.
The complement is A375930, differences A120992.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],SquareFreeQ[#]&]],1]
  • PARI
    lista(kmax) = {my(is1 = 1, is2, c = 1); for(k = 2, kmax, is2 = issquarefree(k); if(is2, c++); if(is1 && is2, print1(c-1, ", ")); is1 = is2);} \\ Amiram Eldar, Sep 15 2024

A373409 Length of the n-th maximal antirun of nonsquarefree numbers differing by more than one.

Original entry on oeis.org

2, 6, 2, 5, 2, 1, 6, 4, 2, 7, 1, 5, 2, 2, 1, 4, 4, 3, 6, 2, 2, 4, 7, 5, 7, 1, 1, 6, 6, 2, 3, 4, 7, 3, 3, 5, 1, 3, 1, 3, 2, 2, 3, 5, 5, 7, 1, 5, 7, 5, 1, 8, 4, 2, 5, 2, 2, 3, 3, 1, 7, 3, 4, 7, 1, 5, 2, 5, 2, 6, 7, 6, 7, 5, 1, 2, 3, 5, 6, 4, 1, 3, 5, 7, 2, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2024

Keywords

Comments

An antirun of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by more than one.
Conjecture: The maximum is 9, and there is no antirun of more than 9 nonsquarefree numbers. Confirmed up to 100,000,000.

Examples

			Row-lengths of:
   4   8
   9  12  16  18  20  24
  25  27
  28  32  36  40  44
  45  48
  49
  50  52  54  56  60  63
  64  68  72  75
  76  80
  81  84  88  90  92  96  98
  99
The first maximal antirun of length 9 is the following, shown with prime indices:
  6345: {2,2,2,3,15}
  6348: {1,1,2,9,9}
  6350: {1,3,3,31}
  6352: {1,1,1,1,78}
  6354: {1,2,2,71}
  6356: {1,1,4,49}
  6358: {1,5,7,7}
  6360: {1,1,1,2,3,16}
  6363: {2,2,4,26}
		

Crossrefs

Positions of first appearances are A373573, sorted A373574.
Functional neighbors: A027833, A053797, A068781, A373127, A373403, A373410, A373412.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Length/@Split[Select[Range[1000],!SquareFreeQ[#]&],#1+1!=#2&]//Most

A373400 Numbers k such that the k-th maximal run of composite numbers has length different from all prior maximal runs. Sorted positions of first appearances in A176246 (or A046933 shifted).

Original entry on oeis.org

1, 3, 8, 23, 29, 33, 45, 98, 153, 188, 216, 262, 281, 366, 428, 589, 737, 1182, 1830, 1878, 2190, 2224, 3076, 3301, 3384, 3426, 3643, 3792, 4521, 4611, 7969, 8027, 8687, 12541, 14356, 14861, 15782, 17005, 19025, 23282, 30801, 31544, 33607, 34201, 34214, 38589
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2024

Keywords

Comments

The unsorted version is A073051.
A run of a sequence (in this case A002808) is an interval of positions at which consecutive terms differ by one.

Examples

			The maximal runs of composite numbers begin:
   4
   6
   8   9  10
  12
  14  15  16
  18
  20  21  22
  24  25  26  27  28
  30
  32  33  34  35  36
  38  39  40
  42
  44  45  46
  48  49  50  51  52
  54  55  56  57  58
  60
  62  63  64  65  66
  68  69  70
  72
  74  75  76  77  78
  80  81  82
  84  85  86  87  88
  90  91  92  93  94  95  96
  98  99 100
The a(n)-th rows are:
   4
   8   9  10
  24  25  26  27  28
  90  91  92  93  94  95  96
 114 115 116 117 118 119 120 121 122 123 124 125 126
 140 141 142 143 144 145 146 147 148
 200 201 202 203 204 205 206 207 208 209 210
		

Crossrefs

The unsorted version is A073051, firsts of A176246.
For squarefree runs we have the triple (1,3,5), firsts of A120992.
For prime runs we have the triple (1,2,3), firsts of A175632.
For squarefree antiruns we have A373128, firsts of A373127.
For nonsquarefree runs we have A373199 (assuming sorted), firsts of A053797.
For prime antiruns we have A373402, unsorted A373401, firsts of A027833.
For composite runs we have the triple (1,2,7), firsts of A373403.
A000040 lists the primes, differences A001223.
A002808 lists the composite numbers, differences A073783.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[10000],CompositeQ],#1+1==#2&]//Most;
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A375702 Length of the n-th maximal run of adjacent (increasing by one at a time) non-perfect-powers.

Original entry on oeis.org

2, 3, 6, 8, 1, 4, 3, 12, 14, 16, 18, 20, 3, 2, 15, 24, 26, 19, 8, 17, 12, 32, 34, 18, 17, 38, 40, 42, 27, 16, 46, 48, 50, 52, 54, 56, 58, 60, 38, 23, 64, 66, 68, 70, 34, 37, 74, 76, 78, 80, 46, 35, 84, 86, 88, 22, 67, 70, 9, 11, 94, 96, 98, 100, 102, 39, 64
Offset: 1

Views

Author

Gus Wiseman, Aug 27 2024

Keywords

Comments

Non-perfect-powers A007916 are numbers with no proper integer roots.

Examples

			The list of all non-perfect-powers, split into runs, begins:
   2   3
   5   6   7
  10  11  12  13  14  15
  17  18  19  20  21  22  23  24
  26
  28  29  30  31
  33  34  35
  37  38  39  40  41  42  43  44  45  46  47  48
Row n has length a(n), first A375703, last A375704, sum A375705.
		

Crossrefs

For nonsquarefree numbers we have A053797, anti-runs A373409.
For squarefree numbers we have A120992, anti-runs A373127.
For nonprime numbers we have A176246, anti-runs A373403.
For prime-powers we have A373675, anti-runs A373576.
For non-prime-powers we have A373678, anti-runs A373679.
The anti-run version is A375736, sum A375737.
For runs of non-perfect-powers (A007916):
- length: A375702 (this).
- first: A375703
- last: A375704
- sum: A375705
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.
A046933 counts composite numbers between primes.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Length/@Split[Select[Range[100],radQ],#1+1==#2&]//Most

Formula

For n > 2 we have a(n) = A053289(n+1) - 1.

A373401 Least k such that the k-th maximal antirun of prime numbers > 3 has length n. Position of first appearance of n in A027833. The sequence ends if no such antirun exists.

Original entry on oeis.org

1, 2, 4, 6, 10, 8, 69, 40, 24, 46, 41, 21, 140, 82, 131, 210, 50, 199, 35, 30, 248, 192, 277, 185, 458, 1053, 251, 325, 271, 645, 748, 815, 811, 1629, 987, 826, 1967, 423, 1456, 2946, 1109, 406, 1870, 1590, 3681, 2920, 3564, 6423, 1426, 5953, 8345, 12687, 6846
Offset: 1

Views

Author

Gus Wiseman, Jun 09 2024

Keywords

Comments

The sorted version is A373402.
For this sequence, we define an antirun to be an interval of positions at which consecutive primes differ by at least 3.

Examples

			The maximal antiruns of prime numbers > 3 begin:
    5
    7  11
   13  17
   19  23  29
   31  37  41
   43  47  53  59
   61  67  71
   73  79  83  89  97 101
  103 107
  109 113 127 131 137
  139 149
  151 157 163 167 173 179
The a(n)-th rows are:
     5
     7   11
    19   23   29
    43   47   53   59
   109  113  127  131  137
    73   79   83   89   97  101
  2269 2273 2281 2287 2293 2297 2309
  1093 1097 1103 1109 1117 1123 1129 1151
   463  467  479  487  491  499  503  509  521
For example, (19, 23, 29) is the first maximal antirun of length 3, so a(3) = 4.
		

Crossrefs

For composite instead of prime we have A073051.
For runs instead of antiruns we have the triple (4,2,1), firsts of A251092.
For squarefree instead of prime we have A373128, firsts of A373127.
The sorted version is A373402.
A000040 lists the primes, differences A001223.
A002808 lists the composite numbers, differences A073783.
A046933 counts composite numbers between primes.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[4,100000],PrimeQ],#1+2!=#2&]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[t,Range[#]]&];
    Table[Position[t,k][[1,1]],{k,spna[t]}]

A375736 Length of the n-th maximal anti-run of adjacent (increasing by more than one at a time) non-perfect-powers.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.
An anti-run of a sequence is an interval of positions at which consecutive terms differ by more than one.

Examples

			The initial anti-runs are the following, whose lengths are a(n):
  (2)
  (3,5)
  (6)
  (7,10)
  (11)
  (12)
  (13)
  (14)
  (15,17)
  (18)
  (19)
  (20)
  (21)
  (22)
  (23)
  (24,26,28)
		

Crossrefs

For squarefree numbers we have A373127, runs A120992.
For nonprime numbers we have A373403, runs A176246.
For nonsquarefree numbers we have A373409, runs A053797.
For prime-powers we have A373576, runs A373675.
For non-prime-powers (exclusive) we have A373672, runs A110969.
For runs instead of anti-runs we have A375702.
For anti-runs of non-perfect-powers:
- length: A375736 (this)
- first: A375738
- last: A375739
- sum: A375737
For runs of non-perfect-powers:
- length: A375702
- first: A375703
- last: A375704
- sum: A375705
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Length/@Split[Select[Range[100],radQ],#1+1!=#2&]//Most

A373411 Sum of the n-th maximal antirun of squarefree numbers differing by more than one.

Original entry on oeis.org

1, 2, 8, 6, 17, 24, 14, 72, 22, 78, 30, 64, 34, 72, 38, 80, 42, 89, 263, 58, 120, 127, 66, 136, 70, 144, 151, 78, 161, 168, 86, 360, 94, 293, 102, 208, 106, 216, 110, 224, 114, 233, 241, 379, 130, 264, 271, 138, 280, 142, 288, 600, 312, 158, 648, 166, 510, 351
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The length of this antirun is given by A373127.
An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.

Examples

			Row-sums of:
   1
   2
   3  5
   6
   7 10
  11 13
  14
  15 17 19 21
  22
  23 26 29
  30
  31 33
  34
  35 37
  38
  39 41
  42
  43 46
  47 51 53 55 57
		

Crossrefs

The partial sums are a subset of A173143.
Functional neighbors: A007674, A373127 (firsts A373128, sorted firsts A373200), A373404, A373405, A373408, A373412, A373413.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],SquareFreeQ],#1+1!=#2&]//Most

A373669 Least k such that the k-th maximal run of non-prime-powers has length n. Position of first appearance of n in A110969, and the sequence ends if there is none.

Original entry on oeis.org

1, 5, 7, 12, 18, 190, 28, 109, 40, 28195574, 53
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2024

Keywords

Comments

A run of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by one.
Are there only 9 terms?
From David A. Corneth, Jun 14 2024: (Start)
No. a(10) exists.
Between the prime 144115188075855859 and 144115188075855872 = 2^57 there are 12 non-prime-powers so a(12) exists. (End)

Examples

			The maximal runs of non-prime-powers begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
		

Crossrefs

For composite runs we have A073051, sorted A373400, firsts of A176246.
For squarefree runs we have firsts of A120992.
For prime-powers runs we have firsts of A174965.
For prime runs we have firsts of A251092 or A175632.
For squarefree antiruns we have A373128, firsts of A373127.
For nonsquarefree runs we have A373199, firsts of A053797.
The sorted version is A373670.
For antiruns we have firsts of A373672.
For runs of non-prime-powers:
- length A110969
- min A373676
- max A373677
- sum A373678
A000961 lists the powers of primes (including 1).
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A361102 lists the non-prime-powers, without 1 A024619.

Programs

  • Mathematica
    q=Length/@Split[Select[Range[10000],!PrimePowerQ[#]&],#1+1==#2&]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[y,Range[#1]]&];
    Table[Position[q,k][[1,1]],{k,spna[q]}]

A373670 Numbers k such that the k-th run-length A110969(k) of the sequence of non-prime-powers (A024619) is different from all prior run-lengths.

Original entry on oeis.org

1, 5, 7, 12, 18, 28, 40, 53, 71, 109, 170, 190, 198, 207, 236, 303, 394, 457, 606, 774, 1069, 1100, 1225, 1881, 1930, 1952, 2247, 2281, 3140, 3368, 3451, 3493, 3713, 3862, 4595, 4685, 6625, 8063, 8121, 8783, 12359, 12650, 14471, 14979, 15901, 17129, 19155
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2024

Keywords

Comments

The unsorted version is A373669.

Examples

			The maximal runs of non-prime-powers begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
So the a(n)-th runs begin:
   1
  14  15
  20  21  22
  33  34  35  36
  54  55  56  57  58
		

Crossrefs

For nonsquarefree runs we have A373199 (if increasing), firsts of A053797.
For squarefree antiruns see A373200, unsorted A373128, firsts of A373127.
For composite runs we have A373400, unsorted A073051, firsts of A176246.
For prime antiruns we have A373402.
For runs of non-prime-powers:
- length A110969, firsts A373669, sorted A373670 (this sequence):
- min A373676
- max A373677
- sum A373678
For runs of prime-powers:
- length A174965
- min A373673
- max A373674
- sum A373675
A000961 lists the powers of primes (including 1).
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists the non-prime-powers, without 1 A024619.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[10000],!PrimePowerQ[#]&],#1+1==#2&];
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A373408 Minimum of the n-th maximal antirun of squarefree numbers differing by more than one.

Original entry on oeis.org

1, 2, 3, 6, 7, 11, 14, 15, 22, 23, 30, 31, 34, 35, 38, 39, 42, 43, 47, 58, 59, 62, 66, 67, 70, 71, 74, 78, 79, 83, 86, 87, 94, 95, 102, 103, 106, 107, 110, 111, 114, 115, 119, 123, 130, 131, 134, 138, 139, 142, 143, 146, 155, 158, 159, 166, 167, 174, 178, 179
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The maximum is given by A007674.
An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.
Consists of 1 and all squarefree numbers n such that n - 1 is also squarefree.

Examples

			Row-minima of:
   1
   2
   3   5
   6
   7  10
  11  13
  14
  15  17  19  21
  22
  23  26  29
  30
  31  33
  34
  35  37
  38
  39  41
  42
  43  46
  47  51  53  55  57
		

Crossrefs

Functional neighbors: A005381, A006512, A007674, A072284, A373127, A373410, A373411.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    First/@Split[Select[Range[100],SquareFreeQ],#1+1!=#2&]//Most

Formula

a(1) = 1; a(n>1) = A007674(n-1) + 1.
Previous Showing 11-20 of 26 results. Next