cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A374763 Number of integer compositions of n whose leaders of strictly decreasing runs are themselves strictly decreasing.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 10, 15, 22, 32, 47, 71, 106, 156, 227, 328, 473, 683, 986, 1421, 2040, 2916, 4149, 5882, 8314, 11727, 16515, 23221, 32593, 45655, 63810, 88979, 123789, 171838, 238055, 329187, 454451, 626412, 862164, 1184917, 1626124, 2228324, 3048982, 4165640, 5682847
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,1,2,1,1) has strictly decreasing runs ((3,1),(2,1),(1)), with leaders (3,2,1), so is counted under a(8).
The a(0) = 1 through a(8) = 15 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)    (7)     (8)
                (21)  (31)   (32)   (42)   (43)    (53)
                      (211)  (41)   (51)   (52)    (62)
                             (311)  (312)  (61)    (71)
                                    (321)  (322)   (413)
                                    (411)  (412)   (422)
                                           (421)   (431)
                                           (511)   (512)
                                           (3121)  (521)
                                           (3211)  (611)
                                                   (3212)
                                                   (3221)
                                                   (4121)
                                                   (4211)
                                                   (31211)
		

Crossrefs

The opposite version is A374688.
The weak version is A374747.
For partitions instead of compositions we have A375133.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we appear to have A188920.
- For leaders of anti-runs we have A374680.
- For leaders of strictly increasing runs we have A374689.
- For leaders of weakly decreasing runs we have A374746.
Other types of run-leaders (instead of strictly decreasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For weakly increasing leaders we have A374764.
- For weakly decreasing leaders we have A374765.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n)={ my(A=O(x*x^n), p=1+A, q=p, r=p); for(k=1, n\2, r += x^k*q; p *= 1 + x^k; q *= 1 + x^k*p); Vec(r + x^(n\2+1)*q/(1-x)) } \\ Andrew Howroyd, Dec 30 2024

Formula

G.f.: Sum_{k>=0} x^k*Q(k,x) where Q(0,x) = 1 and Q(k,x) = Q(k-1,x) * (1 + x^k*Product_{j=1..k} (1 + x^j)) for k > 0. - Andrew Howroyd, Dec 30 2024

Extensions

a(24) onwards from Andrew Howroyd, Dec 30 2024

A374764 Number of integer compositions of n whose leaders of strictly decreasing runs are weakly increasing.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 23, 40, 69, 118, 199, 333, 553, 911, 1492, 2428, 3928, 6323, 10129, 16151, 25646, 40560, 63905, 100332, 156995, 244877, 380803, 590479, 913100, 1408309, 2166671, 3325445, 5092283, 7780751, 11863546, 18052080, 27415291, 41556849, 62879053, 94975305, 143213145
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the maxima are weakly increasing [but weakly decreasing works too]. The strictly increasing version is A374762.

Examples

			The composition (1,1,2,1) has strictly decreasing runs ((1),(1),(2,1)) with leaders (1,1,2) so is counted under a(5).
The composition (1,2,1,1) has strictly decreasing runs ((1),(2,1),(1)) with leaders (1,2,1) so is not counted under a(5).
The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (1111)  (122)
                                (131)
                                (212)
                                (221)
                                (1112)
                                (1121)
                                (11111)
		

Crossrefs

For partitions instead of compositions we have A034296.
For strictly increasing leaders we have A374688.
The opposite version is A374697.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374681.
- For leaders of weakly increasing runs we have A374635.
- For leaders of strictly increasing runs we have A374690.
- For leaders of weakly decreasing runs we have A188900.
Other types of run-leaders (instead of weakly increasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For weakly decreasing leaders we have A374765.
- For strictly decreasing leaders we have A374763.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335548 counts non-contiguous compositions, ranks A374253.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],LessEqual@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(1/prod(k=1, n, 1 - x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: 1/(Product_{k>=1} (1 - x^k*Product_{j=1..k-1} (1 + x^j))). - Andrew Howroyd, Jul 31 2024

Extensions

a(24) onwards from Andrew Howroyd, Jul 31 2024

A374690 Number of integer compositions of n whose leaders of strictly increasing runs are weakly increasing.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 19, 34, 63, 115, 211, 387, 710, 1302, 2385, 4372, 8009, 14671, 26867, 49196, 90069, 164884, 301812, 552406, 1011004, 1850209, 3385861, 6195832, 11337470, 20745337, 37959030, 69454669, 127081111, 232517129, 425426211, 778376479, 1424137721
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.

Examples

			The composition (1,1,3,2,3,2) has strictly increasing runs ((1),(1,3),(2,3),(2)), with leaders (1,1,2,2), so is counted under a(12).
The a(0) = 1 through a(6) = 19 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (12)   (13)    (14)     (15)
                 (111)  (22)    (23)     (24)
                        (112)   (113)    (33)
                        (121)   (122)    (114)
                        (1111)  (131)    (123)
                                (1112)   (132)
                                (1121)   (141)
                                (1211)   (222)
                                (11111)  (1113)
                                         (1122)
                                         (1131)
                                         (1212)
                                         (1311)
                                         (11112)
                                         (11121)
                                         (11211)
                                         (12111)
                                         (111111)
		

Crossrefs

Ranked by positions of weakly increasing rows in A374683.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374681.
- For leaders of weakly increasing runs we have A374635.
- For leaders of weakly decreasing runs we have A188900.
- For leaders of strictly decreasing runs we have A374764.
Types of run-leaders (instead of weakly increasing):
- For identical leaders we have A374686, ranks A374685.
- For distinct leaders we have A374687, ranks A374698.
- For strictly increasing leaders we have A374688.
- For strictly decreasing leaders we have A374689.
- For weakly decreasing leaders we have A374697.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],LessEqual@@First/@Split[#,Less]&]],{n,0,15}]

Extensions

a(26) and beyond from Christian Sievers, Aug 08 2024

A374765 Number of integer compositions of n whose leaders of strictly decreasing runs are weakly decreasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 88, 141, 225, 357, 565, 891, 1399, 2191, 3420, 5321, 8256, 12774, 19711, 30339, 46584, 71359, 109066, 166340, 253163, 384539, 582972, 882166, 1332538, 2009377, 3024969, 4546562, 6822926, 10223632, 15297051, 22855872, 34103117
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,1,2,2,1) has strictly decreasing runs ((3,1),(2),(2,1)), with leaders (3,2,2), so is counted under a(9).
The a(0) = 1 through a(6) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (21)   (22)    (32)     (33)
                 (111)  (31)    (41)     (42)
                        (211)   (212)    (51)
                        (1111)  (221)    (222)
                                (311)    (312)
                                (2111)   (321)
                                (11111)  (411)
                                         (2121)
                                         (2211)
                                         (3111)
                                         (21111)
                                         (111111)
		

Crossrefs

The opposite version is A374690.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we appear to have A189076.
- For leaders of anti-runs we have A374682.
- For leaders of strictly increasing runs we have A374697.
- For leaders of weakly decreasing runs we have A374747.
Other types of run-leaders (instead of weakly decreasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For strictly decreasing leaders we have A374763.
- For weakly increasing leaders we have A374764.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],GreaterEqual@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    dfs(m, r, u) = 1 + sum(s=r, min(m, u), dfs(m-s, s, s)*x^s + sum(t=1, min(s-1, m-s), dfs(m-s-t, t, s)*x^(s+t)*prod(i=t+1, s-1, 1+x^i)));
    lista(nn) = Vec(dfs(nn, 1, nn) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 13 2025

Extensions

More terms from Jinyuan Wang, Feb 13 2025

A373952 Number of integer compositions of n whose run-compression sums to 3.

Original entry on oeis.org

0, 0, 0, 3, 2, 4, 5, 6, 6, 9, 8, 10, 11, 12, 12, 15, 14, 16, 17, 18, 18, 21, 20, 22, 23, 24, 24, 27, 26, 28, 29, 30, 30, 33, 32, 34, 35, 36, 36, 39, 38, 40, 41, 42, 42, 45, 44, 46, 47, 48, 48, 51, 50, 52, 53, 54, 54, 57, 56, 58, 59, 60, 60, 63, 62, 64, 65, 66
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2024

Keywords

Comments

We define the (run-) compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has compression (1,2,1).

Examples

			The a(3) = 3 through a(9) = 9 compositions:
  (3)   (112)  (122)   (33)     (1222)    (11222)    (333)
  (12)  (211)  (221)   (1122)   (2221)    (22211)    (12222)
  (21)         (1112)  (2211)   (11122)   (111122)   (22221)
               (2111)  (11112)  (22111)   (221111)   (111222)
                       (21111)  (111112)  (1111112)  (222111)
                                (211111)  (2111111)  (1111122)
                                                     (2211111)
                                                     (11111112)
                                                     (21111111)
		

Crossrefs

For partitions we appear to have A137719.
Column k = 3 of A373949, rows-reversed A373951.
The compression-sum statistic is represented by A373953, difference A373954.
A003242 counts compressed compositions (anti-runs).
A011782 counts compositions.
A114901 counts compositions with no isolated parts.
A116861 counts partitions by compressed sum, by compressed length A116608.
A124767 counts runs in standard compositions, anti-runs A333381.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
A373948 represents the run-compression transformation.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#]]==3&]],{n,0,10}]
  • PARI
    A_x(N)={my(x='x+O('x^N)); concat([0, 0, 0], Vec(x^3 *(3-x-x^2-x^3)/((1-x)*(1-x^2)*(1-x^3))))}
    A_x(50) \\ John Tyler Rascoe, Jul 01 2024

Formula

G.f.: x^3 * (3-x-x^2-x^3)/((1-x)*(1-x^2)*(1-x^3)). - John Tyler Rascoe, Jul 01 2024

Extensions

a(26) onwards from John Tyler Rascoe, Jul 01 2024

A374250 Greatest sum of run-compression of a permutation of the prime factors of n.

Original entry on oeis.org

0, 2, 3, 2, 5, 5, 7, 2, 3, 7, 11, 7, 13, 9, 8, 2, 17, 8, 19, 9, 10, 13, 23, 7, 5, 15, 3, 11, 29, 10, 31, 2, 14, 19, 12, 10, 37, 21, 16, 9, 41, 12, 43, 15, 11, 25, 47, 7, 7, 12, 20, 17, 53, 8, 16, 11, 22, 31, 59, 12, 61, 33, 13, 2, 18, 16, 67, 21, 26, 14, 71
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The prime factors of 24 are {2,2,2,3}, with permutations such as (2,2,3,2) whose run-compression sums to 7, so a(24) = 7.
The prime factors of 216 are {2,2,2,3,3,3}, with permutations such as (2,3,2,3,2,3) whose run-compression sums to 15, so a(216) = 15.
		

Crossrefs

Positions of 2 are A000079 (powers of two) except 1.
Positions of 3 are A000244 (powers of three) except 1.
For least instead of greatest sum of run-compression we have A008472.
For prime indices instead of factors we have A373956.
For number of runs instead of sum of run-compression we have A373957.
A001221 counts distinct prime factors, A001222 with multiplicity.
A003242 counts run-compressed compositions, i.e., anti-runs.
A007947 (squarefree kernel) represents run-compression of multisets.
A008480 counts permutations of prime factors (or prime indices).
A056239 adds up prime indices, row sums of A112798.
A116861 counts partitions by sum of run-compression.
A304038 lists run-compression of prime indices, sum A066328.
A335433 lists numbers whose prime indices are separable, complement A335448.
A373949 counts compositions by sum of run-compression, opposite A373951.
A374251 run-compresses standard compositions, sum A373953, rank A373948.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Table[Max@@(Total[First/@Split[#]]& /@ Permutations[prifacs[n]]),{n,100}]

Formula

a(n) = A001414(n) iff n belongs to A335433 (the separable case, complement A335448), row-sums of A027746.

A373956 Greatest sum of run-compression of a permutation of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 1, 2, 4, 5, 4, 6, 5, 5, 1, 7, 5, 8, 5, 6, 6, 9, 4, 3, 7, 2, 6, 10, 6, 11, 1, 7, 8, 7, 6, 12, 9, 8, 5, 13, 7, 14, 7, 7, 10, 15, 4, 4, 7, 9, 8, 16, 5, 8, 6, 10, 11, 17, 7, 18, 12, 8, 1, 9, 8, 19, 9, 11, 8, 20, 7, 21, 13, 8, 10, 9, 9, 22, 5
Offset: 1

Views

Author

Gus Wiseman, Jul 06 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 24 are {1,1,1,2}, with permutations such as (1,1,2,1) whose run-compression sums to 4, so a(24) = 4.
The prime indices of 216 are {1,1,1,2,2,2}, with permutations such as (1,2,1,2,1,2) whose run-compression sums to 9, so a(216) = 9.
		

Crossrefs

Positions of first appearances are 1 followed by the primes A000040.
Positions of 1 are A000079 (powers of two) except 1.
Positions of 2 are A000244 (powers of three) except 1.
Positions of 3 are {6} U A000351 (six or powers of five) except 1.
For number of runs instead of sum of run-compression we have A373957.
For prime factors instead of indices we have A374250.
A001221 counts distinct prime factors, A001222 with multiplicity.
A003242 counts run-compressed compositions, i.e., anti-runs.
A007947 (squarefree kernel) represents run-compression of multisets.
A008480 counts permutations of prime factors (or prime indices).
A056239 adds up prime indices, row sums of A112798.
A116861 counts partitions by sum of run-compression.
A304038 lists run-compression of prime indices, sum A066328.
A335433 lists numbers whose prime indices are separable, complement A335448.
A373949 counts compositions by sum of run-compression, opposite A373951.
A374251 run-compresses standard compositions, sum A373953, rank A373948.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Max@@(Total[First/@Split[#]]&/@Permutations[prix[n]]),{n,100}]

Formula

a(n) = A056239(n) iff n belongs to A335433 (the separable case), complement A335448.

A374247 The greatest number of runs possible in a permutation of the prime factors of n (A373957) minus the number of distinct such factors (A001221).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 07 2024

Keywords

Comments

If n has separable prime factors (A335433), then a(n) = A001222(n) - A001221(n) = A046660(n). A multiset is separable iff it has an anti-run permutation (meaning there are no adjacent equal parts).

Examples

			The runs of the 6 permutations of the prime factors of 36 are:
  ((2,2),(3,3))
  ((2),(3),(2),(3))
  ((2),(3,3),(2))
  ((3),(2,2),(3))
  ((3),(2),(3),(2))
  ((3,3),(2,2))
The longest length is 4, so a(36) = 4 - 2 = 2.
		

Crossrefs

Positions of first appearances appear to be A026549.
Positions of nonzero terms are A126706, complement A303554.
This is an opposite version of A373957.
The sister-sequence A374246 uses A001222 instead of A001221.
This is the number of nonzero terms in row n of A374252.
A003242 counts run-compressed compositions, i.e., anti-runs.
A008480 counts permutations of prime factors, by number of runs A374252.
A027746 lists prime factors, row-sums A001414.
A027748 is run-compression of prime factors, row-sums A008472.
A304038 is run-compression of prime indices, row-sums A066328.
A333755 counts compositions by number of runs.
A335433 lists separable numbers, complement A335448.
A374250 maximizes sum of run-compression, for indices A373956.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Table[Max@@Table[Length[Split[y]], {y,Permutations[prifacs[n]]}]-PrimeNu[n],{n,100}]

Formula

a(n) = A373957(n) - A001221(n).

A374248 Sum of prime indices of n (with multiplicity) minus the greatest possible sum of run-compression of a permutation of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 96 are {1,1,1,1,1,2}, with sum 7, and we have permutations such as (1,1,1,1,2,1), with run-compression (1,2,1), with sum 4, so a(96) = 7 - 4 = 3.
		

Crossrefs

Positions of zeros are A335433 (separable).
Positions of positive terms are A335448 (inseparable).
This is an opposite version of A373956, for prime factors A374250.
For prime factors instead of indices we have A374255.
A001221 counts distinct prime factors, A001222 with multiplicity.
A003242 counts run-compressed compositions, i.e., anti-runs.
A007947 (squarefree kernel) represents run-compression of multisets.
A008480 counts permutations of prime factors.
A027746 lists prime factors, row-sums A001414.
A027748 is run-compression of prime factors, row-sums A008472.
A056239 adds up prime indices, row-sums of A112798.
A116861 counts partitions by sum of run-compression.
A304038 is run-compression of prime indices, row-sums A066328.
A373949 counts compositions by sum of run-compression, opposite A373951.
A373957 gives greatest number of runs in a permutation of prime factors.
A374251 run-compresses standard compositions, sum A373953, rank A373948.
A374252 counts permutations of prime factors by number of runs.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[prix[n]]-Max@@(Total[First/@Split[#]]&/@Permutations[prix[n]]),{n,100}]

Formula

a(n) = A056239(n) - A373956(n).

A373950 Number of integer compositions of n containing two adjacent ones and no other runs.

Original entry on oeis.org

0, 0, 1, 0, 2, 4, 5, 14, 26, 46, 92, 176, 323, 610, 1145, 2108, 3912, 7240, 13289, 24418, 44778, 81814, 149356, 272222, 495144, 899554, 1632176, 2957332, 5352495, 9677266, 17477761, 31536288, 56852495, 102403134, 184302331, 331452440, 595659234, 1069742760
Offset: 0

Views

Author

Gus Wiseman, Jun 28 2024

Keywords

Comments

Also the number of integer compositions of n such that replacing each run of repeated parts with a single part (run-compression) results in a composition of n-1.

Examples

			The a(0) = 0 through a(7) = 14 compositions:
  .  .  (11)  .  (112)  (113)   (114)   (115)
                 (211)  (311)   (411)   (511)
                        (1121)  (1131)  (1123)
                        (1211)  (1311)  (1132)
                                (2112)  (1141)
                                        (1411)
                                        (2113)
                                        (2311)
                                        (3112)
                                        (3211)
                                        (11212)
                                        (12112)
                                        (21121)
                                        (21211)
		

Crossrefs

For any run (not just of ones) we have A003242.
Subdiagonal of A373949.
These compositions are ranked by A373956.
A003242 counts compressed compositions.
A114901 counts compositions with no isolated parts.
A116861 counts partitions by compressed sum, by compressed length A116608.
A333755 counts compositions by compressed length (number of runs).
A373948 represents the run-compression transformation.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n], Total[First/@Split[#]]==n-1&]],{n,0,10}]
  • PARI
    A_x(N)={my(x='x+O('x^N), h=x/((1+x)^2*(1-sum(i=1,N, (x^i /(1+x^i))))^2)); concat([0, 0], Vec(h))}
    A_x(40) \\ John Tyler Rascoe, Jul 02 2024

Formula

a(n>0) = A373949(n,n-1).
G.f.: x/((1-x)^2 * (1 - Sum_{i>0} (x^i/(1+x^i)))^2). - John Tyler Rascoe, Jul 02 2024

Extensions

a(26) onwards from John Tyler Rascoe, Jul 02 2024
Previous Showing 21-30 of 36 results. Next