cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A377282 Difference between n and the next prime-power (exclusive).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 5, 4, 3, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 4, 3, 2, 1, 2, 1, 6, 5, 4, 3, 2, 1, 2, 1, 2, 1, 6, 5, 4, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2024

Keywords

Examples

			The next prime-power after 13 is 16, so a(12) = 3.
		

Crossrefs

For powers of 2 see A013597, A014210, A014234, A244508, A304521.
For prime instead of prime-power we have A013632.
For previous instead of next prime-power we have A276781, restriction A377289.
The restriction to the prime numbers is A377281.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820, complement A361102.
A031218 gives the greatest prime-power <= n.
A080101 counts prime-powers between primes (exclusive), cf. A377286, A377287, A377288.

Programs

  • Mathematica
    Table[NestWhile[#+1&,n+1,!PrimePowerQ[#]&]-n,{n,100}]
  • Python
    from itertools import count
    from sympy import factorint
    def A377282(n): return next(filter(lambda m:len(factorint(m))<=1, count(n+1)))-n # Chai Wah Wu, Oct 25 2024

Formula

a(n) = A000015(n) - n + 1 for n > 1.
a(prime(n)) = A377281(n).

A377466 Numbers k such that there is more than one perfect power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

4, 9, 11, 30, 327, 445, 3512, 7789, 9361, 26519413
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Perfect powers (A001597) are numbers with a proper integer root, the complement of A007916.
Is this sequence finite?
The Redmond-Sun conjecture (see A308658) implies that this sequence is finite. - Pontus von Brömssen, Nov 05 2024

Examples

			Primes 9 and 10 are 23 and 29, and the interval (24,25,26,27,28) contains two perfect powers (25,27), so 9 is in the sequence.
		

Crossrefs

For powers of 2 see A013597, A014210, A014234, A188951, A244508, A377467.
For no prime-powers we have A377286, ones in A080101.
For a unique prime-power we have A377287.
For squarefree numbers see A377430, A061398, A377431, A068360, A224363.
These are the positions of terms > 1 in A377432.
For a unique perfect power we have A377434.
For no perfect powers we have A377436.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A046933 counts the interval from A008864(n) to A006093(n+1).
A081676 gives the greatest perfect power <= n.
A131605 lists perfect powers that are not prime-powers.
A246655 lists the prime-powers not including 1, complement A361102.
A366833 counts prime-powers between primes, see A053607, A304521.
A377468 gives the least perfect power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[100],Count[Range[Prime[#]+1, Prime[#+1]-1],_?perpowQ]>1&]
  • Python
    from itertools import islice
    from sympy import prime
    from gmpy2 import is_power, next_prime
    def A377466_gen(startvalue=1): # generator of terms >= startvalue
        k = max(startvalue,1)
        p = prime(k)
        while (q:=next_prime(p)):
            c = 0
            for i in range(p+1,q):
                if is_power(i):
                    c += 1
                    if c>1:
                        yield k
                        break
            k += 1
            p = q
    A377466_list = list(islice(A377466_gen(),9)) # Chai Wah Wu, Nov 04 2024

Formula

a(n) = A000720(A116086(n)) = A000720(A116455(n)) for n <= 10. This would hold for all n if there do not exist more than two perfect powers between any two consecutive primes, which is implied by the Redmond-Sun conjecture. - Pontus von Brömssen, Nov 05 2024

Extensions

a(10) from Pontus von Brömssen, Nov 04 2024

A067871 Number of primes between consecutive terms of A246547 (prime powers p^k, k >= 2).

Original entry on oeis.org

2, 0, 2, 3, 0, 2, 4, 3, 4, 8, 0, 1, 8, 14, 1, 7, 7, 4, 25, 2, 15, 15, 17, 16, 10, 45, 2, 44, 20, 26, 18, 0, 2, 28, 52, 36, 42, 32, 45, 45, 47, 19, 30, 106, 36, 35, 4, 114, 28, 135, 89, 42, 87, 42, 34, 66, 192, 106, 56, 23, 39, 37, 165, 49, 37, 262, 58, 160, 22
Offset: 1

Views

Author

Jon Perry, Mar 07 2002

Keywords

Comments

Does this sequence have any terms appearing infinitely often? In particular, are {2, 5, 11, 32, 77} the only zeros? As an example, {121, 122, 123, 124, 125} is an interval containing no primes, corresponding to a(11) = 0. - Gus Wiseman, Dec 02 2024

Examples

			The first few prime powers A246547 are 4, 8, 9, 16. The first few primes are 2, 3, 5, 7, 11, 13. We have (4), 5, 7, (8), (9), 11, 13, (16) and so the sequence begins with 2, 0, 2.
The initial terms count the following sets of primes: {5,7}, {}, {11,13}, {17,19,23}, {}, {29,31}, {37,41,43,47}, ... - _Gus Wiseman_, Dec 02 2024
		

Crossrefs

For primes between nonsquarefree numbers we have A236575.
For composite instead of prime we have A378456.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A080101 counts prime powers between primes.
A246547 lists the non prime prime powers, differences A053707.
A246655 lists the prime powers not including 1, complement A361102.

Programs

  • Mathematica
    t = {}; cnt = 0; Do[If[PrimePowerQ[n], If[FactorInteger[n][[1, 2]] == 1, cnt++, AppendTo[t, cnt]; cnt = 0]], {n, 4 + 1, 30000}]; t (* T. D. Noe, May 21 2013 *)
    nn = 2^20; Differences@ Map[PrimePi, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], PrimePowerQ] ] (* Michael De Vlieger, Oct 26 2023 *)

Formula

a(n) = A000720(A025475(n+3)) - A000720(A025475(n+2)). - David Wasserman, Dec 20 2002

Extensions

More terms from David Wasserman, Dec 20 2002
Definition clarified by N. J. A. Sloane, Oct 27 2023

A377703 First differences of the sequence A345531(k) = least prime-power greater than the k-th prime.

Original entry on oeis.org

1, 3, 1, 5, 3, 3, 4, 2, 6, 1, 9, 2, 4, 2, 10, 2, 3, 7, 2, 6, 2, 8, 8, 4, 2, 4, 2, 4, 8, 7, 9, 2, 10, 2, 6, 6, 4, 2, 10, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 13, 7, 6, 2, 6, 4, 2, 6, 18, 4, 2, 4, 14, 6, 6, 6, 4, 6, 2, 12, 6, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6
Offset: 1

Views

Author

Gus Wiseman, Nov 07 2024

Keywords

Comments

What is the union of this sequence? In particular, does it contain 17?

Crossrefs

First differences of A345531.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A080101 counts prime-powers between primes (exclusive).
A246655 lists the prime-powers, differences A057820 without first term.
A361102 lists the non-powers of primes, differences A375708.
A366833 counts prime-powers between primes, see A053607, A304521, A377057 (positive), A377286 (zero), A377287 (one), A377288 (two).
A377432 counts perfect-powers between primes, see A377434 (one), A377436 (zero), A377466 (multiple).

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&, Prime[n]+1,!PrimePowerQ[#]&],{n,100}]]
  • Python
    from sympy import factorint, prime, nextprime
    def A377703(n): return -next(filter(lambda m:len(factorint(m))<=1, count((p:=prime(n))+1)))+next(filter(lambda m:len(factorint(m))<=1, count(nextprime(p)+1))) # Chai Wah Wu, Nov 14 2024

A377288 Numbers k such that there are exactly two prime-powers between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

4, 9, 30, 327, 3512
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Comments

Is this sequence finite? For this conjecture see A053706, A080101, A366833.
Any further terms are > 10^12. - Lucas A. Brown, Nov 08 2024

Examples

			Primes 9 and 10 are 23 and 29, and the interval (24, 25, 26, 27, 28) contains the prime-powers 25 and 27, so 9 is in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933 elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The corresponding primes are A053706.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
These are the positions of 2 in A080101, or 3 in A366833.
For at least one prime-power we have A377057, primes A053607.
For no prime-powers we have A377286.
For exactly one prime-power we have A377287.
For squarefree instead of prime-power see A377430, A061398, A377431, A068360.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]==2&]

Formula

prime(a(n)) = A053706(n).

A377781 First differences of A065514(n) = greatest number < prime(n) that is 1 or a prime-power.

Original entry on oeis.org

1, 2, 1, 4, 2, 5, 1, 2, 8, 2, 3, 5, 4, 2, 6, 4, 6, 5, 3, 4, 2, 8, 2, 6, 8, 4, 2, 4, 2, 16, 3, 3, 6, 2, 10, 2, 6, 6, 6, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 4, 13, 1, 6, 6, 2, 6, 4, 8, 4, 14, 4, 2, 4, 14, 12, 4, 2, 4, 8, 6, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2024

Keywords

Comments

Note 1 is a power of a prime but not a prime-power.

Crossrefs

Differences of A065514, which is the restriction of A031218 (differences A377782).
The opposite is A377703 (restriction of A000015), differences of A345531.
The opposite for nonsquarefree is A377784, differences of A377783.
For nonsquarefree we have A378034, differences of A378032 (restriction of A378033).
The opposite for squarefree is A378037, differences of A112926 (restriction of A067535).
For squarefree we have A378038, differences of A112925 (restriction of A070321).
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime-powers, differences A057820.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A361102 lists the non-powers of primes, differences A375708.
Prime-powers between primes:
- A053607 primes
- A080101 count (exclusive)
- A304521 by bits
- A366833 count
- A377057 positive
- A377286 zero
- A377287 one
- A377288 two

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,Prime[n]-1,#>1&&!PrimePowerQ[#]&],{n,100}]]

A377782 First-differences of A031218(n) = greatest number <= n that is 1 or a prime-power.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 0, 2, 0, 2, 0, 0, 3, 1, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 2, 0, 2, 1, 0, 0, 0, 0, 5, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 6, 0, 2, 0, 0, 3, 0, 0, 3, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 6, 0, 2, 0, 2, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2024

Keywords

Comments

Note 1 is a power of a prime (A000961) but not a prime-power (A246655).

Crossrefs

Positions of 1 are A006549.
Positions of 0 are A080765 = A024619 - 1, complement A181062 = A000961 - 1.
Positions of 2 are A120432 (except initial terms).
Sorted positions of first appearances appear to include A167236 - 1.
Positions of terms > 1 are A373677.
The restriction to primes minus 1 is A377289.
Below, A (B) indicates that A is the first-differences of B:
- This sequence is A377782 (A031218), which has restriction to primes A065514 (A377781).
- The opposite is A377780 (A000015), restriction A377703 (A345531).
- For nonsquarefree we have A378036 (A378033), opposite A378039 (A120327).
- For squarefree we have A378085 (A112925), restriction A378038 (A070321).
A000040 lists the primes, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A361102 lists the non-powers of primes, differences A375708.
A378034 gives differences of A378032 (restriction of A378033).
Prime-powers between primes: A053607, A080101, A366833, A377057, A377286, A377287.

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,n,#>1&&!PrimePowerQ[#]&],{n,100}]]

A378456 Number of composite numbers between consecutive nonprime prime powers (exclusive).

Original entry on oeis.org

1, 0, 4, 5, 1, 2, 12, 11, 12, 31, 3, 1, 32, 59, 11, 25, 46, 13, 125, 14, 80, 88, 94, 103, 52, 261, 35, 267, 147, 172, 120, 9, 9, 163, 355, 279, 313, 207, 329, 347, 376, 108, 257, 805, 283, 262, 25, 917, 242, 1081, 702, 365, 752, 389, 251, 535, 1679, 877, 447
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2024

Keywords

Comments

The inclusive version is a(n) + 2.
Nonprime prime powers (A246547) begin: 4, 8, 9, 16, 25, 27, 32, 49, ...

Examples

			The initial terms count the following composite numbers:
  {6}, {}, {10,12,14,15}, {18,20,21,22,24}, {26}, {28,30}, ...
The composite numbers for a(77) = 6 together with their prime indices are the following. We have also shown the nonprime prime powers before and after:
  32761: {42,42}
  32762: {1,1900}
  32763: {2,19,38}
  32764: {1,1,1028}
  32765: {3,847}
  32766: {1,2,14,31}
  32767: {4,11,36}
  32768: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
		

Crossrefs

For prime instead of composite we have A067871.
For nonsquarefree numbers we have A378373, for primes A236575.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A002808 lists the composite numbers.
A031218 gives the greatest prime-power <= n.
A046933 counts composite numbers between primes.
A053707 gives first differences of nonprime prime powers.
A080101 = A366833 - 1 counts prime powers between primes.
A246655 lists the prime-powers not including 1, complement A361102.
A345531 gives the nearest prime power after prime(n) + 1, difference A377281.
Cf. A377286, A377287, A377288 (primes A053706).

Programs

  • Mathematica
    nn=1000;
    v=Select[Range[nn],PrimePowerQ[#]&&!PrimeQ[#]&];
    Table[Length[Select[Range[v[[i]]+1,v[[i+1]]-1],CompositeQ]],{i,Length[v]-1}]

A377433 Number of non-perfect-powers x in the range prime(n) < x < prime(n+1).

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 3, 3, 1, 3, 3, 1, 3, 4, 5, 1, 4, 3, 1, 5, 2, 5, 7, 2, 1, 3, 1, 3, 11, 2, 5, 1, 8, 1, 5, 5, 3, 4, 5, 1, 9, 1, 2, 1, 11, 10, 2, 1, 3, 5, 1, 8, 4, 5, 5, 1, 5, 3, 1, 8, 13, 3, 1, 3, 12, 5, 8, 1, 3, 5, 6, 5, 5, 3, 5, 7, 2, 7, 9, 1, 9, 1, 5, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers without a proper integer root.
Positions of terms > 1 appear to be A049579.

Examples

			Between prime(4) = 7 and prime(5) = 11 the only non-perfect-power is 10, so a(4) = 1.
		

Crossrefs

Positions of 1 are latter terms of A029707.
Positions of terms > 1 appear to be A049579.
For prime-powers instead of non-perfect-powers we have A080101.
For non-prime-powers instead of non-perfect-powers we have A368748.
Perfect-powers in the same range are counted by A377432.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706.
A065514 gives the greatest prime-power < prime(n), difference A377289.
A081676 gives the greatest perfect-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.
A366833 counts prime-powers between primes, see A053706, A053607, A304521, A377286.
A377468 gives the least perfect-power > n.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Table[Length[Select[Range[Prime[n]+1, Prime[n+1]-1],radQ]],{n,100}]

Formula

a(n) + A377432(n) = A046933(n) = prime(n+1) - prime(n) - 1.

A378615 Number of non prime powers <= prime(n).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 7, 10, 13, 14, 18, 21, 22, 25, 29, 34, 35, 39, 42, 43, 48, 50, 55, 62, 65, 66, 69, 70, 73, 84, 86, 91, 92, 101, 102, 107, 112, 115, 119, 124, 125, 134, 135, 138, 139, 150, 161, 164, 165, 168, 173, 174, 182, 186, 191, 196, 197, 202, 205
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2024

Keywords

Examples

			The non prime powers counted under each term:
  n=1  n=2  n=3  n=4  n=5  n=6  n=7  n=8  n=9  n=10
  -------------------------------------------------
   1    1    1    6   10   12   15   18   22   28
                  1    6   10   14   15   21   26
                       1    6   12   14   20   24
                            1   10   12   18   22
                                 6   10   15   21
                                 1    6   14   20
                                      1   12   18
                                          10   15
                                           6   14
                                           1   12
                                               10
                                                6
                                                1
		

Crossrefs

Restriction of A356068 (first-differences A143731).
First-differences are A368748.
Maxima are A378616.
Other classes of numbers (instead of non prime powers):
- prime: A000027 (diffs A000012), restriction of A000720 (diffs A010051)
- squarefree: A071403 (diffs A373198), restriction of A013928 (diffs A008966)
- nonsquarefree: A378086 (diffs A061399), restriction of A057627 (diffs A107078)
- prime power: A027883 (diffs A366833), restriction of A025528 (diffs A010055)
- composite: A065890 (diffs A046933), restriction of A065855 (diffs A005171)
A000040 lists the primes, differences A001223
A000961 and A246655 list the prime powers, differences A057820.
A024619 lists the non prime powers, differences A375735, seconds A376599.
A080101 counts prime powers between primes (exclusive), inclusive A366833.
A361102 lists the non powers of primes, differences A375708.

Programs

  • Mathematica
    Table[Length[Select[Range[Prime[n]],Not@*PrimePowerQ]],{n,100}]
  • Python
    from sympy import prime, primepi, integer_nthroot
    def A378615(n): return int((p:=prime(n))-n-sum(primepi(integer_nthroot(p,k)[0]) for k in range(2,p.bit_length()))) # Chai Wah Wu, Dec 07 2024

Formula

a(n) = prime(n) - A027883(n). - Chai Wah Wu, Dec 08 2024
Previous Showing 11-20 of 22 results. Next