cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A378040 Union of A377783(n) = least nonsquarefree number > prime(n).

Original entry on oeis.org

4, 8, 12, 16, 18, 20, 24, 32, 40, 44, 48, 54, 60, 63, 68, 72, 75, 80, 84, 90, 98, 104, 108, 112, 116, 128, 132, 140, 150, 152, 160, 164, 168, 175, 180, 184, 192, 196, 198, 200, 212, 224, 228, 232, 234, 240, 242, 252, 260, 264, 270, 272, 279, 284, 294, 308, 312
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2024

Keywords

Comments

Numbers k such that, if p is the greatest prime < k, all numbers from p to k (exclusive) are squarefree.

Crossrefs

For squarefree we have A112926 (diffs A378037), opposite A112925 (diffs A378038).
For prime-power instead of nonsquarefree we have A345531, differences A377703.
Union of A377783 (diffs A377784), restriction of A120327 (diffs A378039).
Nonsquarefree numbers not appearing are A378084, see also A378082, A378083.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A070321 gives the greatest squarefree number up to n.
A071403(n) = A013928(prime(n)) counts squarefree numbers up to prime(n).
A378086(n) = A057627(prime(n)) counts nonsquarefree numbers up to prime(n).
Cf. A378034 (differences of A378032), restriction of A378036 (differences A378033).

Programs

  • Mathematica
    Union[Table[NestWhile[#+1&,Prime[n],SquareFreeQ],{n,100}]]
    lns[p_]:=Module[{k=p+1},While[SquareFreeQ[k],k++];k]; Table[lns[p],{p,Prime[Range[70]]}]//Union (* Harvey P. Dale, Jun 12 2025 *)

A377466 Numbers k such that there is more than one perfect power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

4, 9, 11, 30, 327, 445, 3512, 7789, 9361, 26519413
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Perfect powers (A001597) are numbers with a proper integer root, the complement of A007916.
Is this sequence finite?
The Redmond-Sun conjecture (see A308658) implies that this sequence is finite. - Pontus von Brömssen, Nov 05 2024

Examples

			Primes 9 and 10 are 23 and 29, and the interval (24,25,26,27,28) contains two perfect powers (25,27), so 9 is in the sequence.
		

Crossrefs

For powers of 2 see A013597, A014210, A014234, A188951, A244508, A377467.
For no prime-powers we have A377286, ones in A080101.
For a unique prime-power we have A377287.
For squarefree numbers see A377430, A061398, A377431, A068360, A224363.
These are the positions of terms > 1 in A377432.
For a unique perfect power we have A377434.
For no perfect powers we have A377436.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A046933 counts the interval from A008864(n) to A006093(n+1).
A081676 gives the greatest perfect power <= n.
A131605 lists perfect powers that are not prime-powers.
A246655 lists the prime-powers not including 1, complement A361102.
A366833 counts prime-powers between primes, see A053607, A304521.
A377468 gives the least perfect power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[100],Count[Range[Prime[#]+1, Prime[#+1]-1],_?perpowQ]>1&]
  • Python
    from itertools import islice
    from sympy import prime
    from gmpy2 import is_power, next_prime
    def A377466_gen(startvalue=1): # generator of terms >= startvalue
        k = max(startvalue,1)
        p = prime(k)
        while (q:=next_prime(p)):
            c = 0
            for i in range(p+1,q):
                if is_power(i):
                    c += 1
                    if c>1:
                        yield k
                        break
            k += 1
            p = q
    A377466_list = list(islice(A377466_gen(),9)) # Chai Wah Wu, Nov 04 2024

Formula

a(n) = A000720(A116086(n)) = A000720(A116455(n)) for n <= 10. This would hold for all n if there do not exist more than two perfect powers between any two consecutive primes, which is implied by the Redmond-Sun conjecture. - Pontus von Brömssen, Nov 05 2024

Extensions

a(10) from Pontus von Brömssen, Nov 04 2024

A378084 Nonsquarefree numbers not appearing in A377783 (least nonsquarefree number > prime(n)).

Original entry on oeis.org

9, 25, 27, 28, 36, 45, 49, 50, 52, 56, 64, 76, 81, 88, 92, 96, 99, 100, 117, 120, 121, 124, 125, 126, 135, 136, 144, 147, 148, 153, 156, 162, 169, 171, 172, 176, 188, 189, 204, 207, 208, 216, 220, 225, 236, 243, 244, 245, 248, 250, 256, 261, 268, 275, 276, 280
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2024

Keywords

Comments

Warning: do not confuse with A377784.

Examples

			The terms together with their prime indices begin:
    9: {2,2}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
   36: {1,1,2,2}
   45: {2,2,3}
   49: {4,4}
   50: {1,3,3}
   52: {1,1,6}
   56: {1,1,1,4}
   64: {1,1,1,1,1,1}
   76: {1,1,8}
   81: {2,2,2,2}
   88: {1,1,1,5}
   92: {1,1,9}
   96: {1,1,1,1,1,2}
		

Crossrefs

Disjoint from A377783 (union A378040), first-differences A377784.
Appearing once: A378082.
Appearing twice: A378083.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes (sums A337030), zeros A068360.
A061399 counts nonsquarefree numbers between primes (sums A378086), zeros A068361.
A070321 gives the greatest squarefree number up to n.
A112925 gives least squarefree number > prime(n), differences A378038.
A112926 gives greatest squarefree number < prime(n), differences A378037.
A120327 (union A162966) gives least nonsquarefree number >= n, differences A378039.
A377046 encodes k-differences of nonsquarefree numbers, zeros A377050.

Programs

  • Mathematica
    nn=100;
    y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ[#]&],{n,nn}];
    Complement[Select[Range[Prime[nn]],!SquareFreeQ[#]&],y]

Formula

Complement of A378040 in A013929.

A379308 Number of integer partitions of n with a unique squarefree part.

Original entry on oeis.org

0, 1, 1, 1, 0, 2, 2, 2, 0, 3, 5, 5, 1, 6, 9, 9, 2, 10, 14, 18, 6, 18, 24, 30, 11, 28, 39, 47, 24, 48, 63, 76, 41, 74, 95, 118, 65, 120, 149, 181, 107, 181, 221, 266, 169, 266, 335, 398, 262, 394, 487, 578, 391, 578, 697, 844, 592, 834, 997, 1198, 867
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2024

Keywords

Examples

			The a(1) = 1 through a(11) = 5 partitions:
  (1)  (2)  (3)  .  (5)    (6)    (7)    .  (5,4)    (10)     (11)
                    (4,1)  (4,2)  (4,3)     (8,1)    (6,4)    (7,4)
                                            (4,4,1)  (8,2)    (8,3)
                                                     (9,1)    (9,2)
                                                     (4,4,2)  (4,4,3)
		

Crossrefs

If all parts are squarefree we have A073576 (strict A087188), ranks A302478.
If no parts are squarefree we have A114374 (strict A256012), ranks A379307.
For composite instead of squarefree we have A379302 (strict A379303), ranks A379301.
For prime instead of squarefree we have A379304, (strict A379305), ranks A331915.
The strict case is A379309.
For old prime instead of squarefree we have A379314, (strict A379315), ranks A379312.
Ranked by A379316, positions of 1 in A379306.
A000041 counts integer partitions, strict A000009.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A377038 gives k-th differences of squarefree numbers.
A379310 counts nonsquarefree prime indices.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[#,_?SquareFreeQ]==1&]],{n,0,30}]

A379309 Number of strict integer partitions of n with a unique squarefree part.

Original entry on oeis.org

0, 1, 1, 1, 0, 2, 2, 2, 0, 2, 4, 4, 1, 4, 7, 7, 2, 6, 8, 11, 4, 9, 13, 17, 7, 13, 20, 22, 13, 20, 29, 33, 21, 29, 40, 47, 27, 41, 56, 64, 42, 59, 77, 85, 60, 74, 104, 115, 83, 101, 141, 155, 113, 138, 179, 206, 156, 183, 236, 272, 212, 239, 309, 343, 282, 315
Offset: 0

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Examples

			The a(9) = 2 through a(15) = 7 partitions:
  (5,4)  (10)   (11)   (9,3)  (13)     (14)     (15)
  (8,1)  (6,4)  (7,4)         (8,5)    (8,6)    (8,7)
         (8,2)  (8,3)         (12,1)   (9,5)    (9,6)
         (9,1)  (9,2)         (8,4,1)  (10,4)   (11,4)
                                       (12,2)   (12,3)
                                       (8,4,2)  (8,4,3)
                                       (9,4,1)  (9,4,2)
		

Crossrefs

If all parts are squarefree we have A087188, non-strict A073576 (ranks A302478).
If no parts are squarefree we have A256012, non-strict A114374 (ranks A379307).
For composite instead of squarefree we have A379303, non-strict A379302 (ranks A379301).
For prime instead of squarefree we have A379305, non-strict A379304 (ranks A331915).
The non-strict version is A379308, ranks A379316.
For old prime instead of squarefree we have A379315, non-strict A379314 (ranks A379312).
Ranked by A379316 /\ A005117 = squarefree positions of 1 in A379306.
A000041 counts integer partitions, strict A000009.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A377038 gives k-th differences of squarefree numbers.
A379310 counts nonsquarefree prime indices.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,_?SquareFreeQ]==1&]],{n,0,30}]
  • PARI
    lista(nn) = my(r=1, s=0); for(k=1, nn, if(issquarefree(k), s+=x^k, r*=1+x^k)); concat(0, Vec(r*s+O(x^(1+nn)))); \\ Jinyuan Wang, Feb 21 2025

Extensions

More terms from Jinyuan Wang, Feb 21 2025

A377288 Numbers k such that there are exactly two prime-powers between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

4, 9, 30, 327, 3512
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Comments

Is this sequence finite? For this conjecture see A053706, A080101, A366833.
Any further terms are > 10^12. - Lucas A. Brown, Nov 08 2024

Examples

			Primes 9 and 10 are 23 and 29, and the interval (24, 25, 26, 27, 28) contains the prime-powers 25 and 27, so 9 is in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933 elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The corresponding primes are A053706.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
These are the positions of 2 in A080101, or 3 in A366833.
For at least one prime-power we have A377057, primes A053607.
For no prime-powers we have A377286.
For exactly one prime-power we have A377287.
For squarefree instead of prime-power see A377430, A061398, A377431, A068360.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]==2&]

Formula

prime(a(n)) = A053706(n).

A378082 Terms appearing only once in A377783 = least nonsquarefree number > prime(n).

Original entry on oeis.org

12, 16, 18, 20, 24, 40, 48, 54, 60, 63, 68, 72, 75, 80, 84, 90, 98, 108, 112, 116, 128, 132, 150, 152, 160, 164, 168, 175, 180, 184, 192, 196, 198, 200, 212, 224, 228, 232, 234, 240, 242, 252, 260, 264, 270, 272, 279, 294, 308, 312, 315, 320, 332, 338, 348
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2024

Keywords

Comments

Nonsquarefree numbers k such that if p < q are the two greatest primes < k, there is at least one nonsquarefree number between p and q but all numbers between q and k are squarefree. - Robert Israel, Nov 20 2024

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   63: {2,2,4}
   68: {1,1,7}
   72: {1,1,1,2,2}
   75: {2,3,3}
   80: {1,1,1,1,3}
   84: {1,1,2,4}
   90: {1,2,2,3}
   98: {1,4,4}
  108: {1,1,2,2,2}
  112: {1,1,1,1,4}
  116: {1,1,10}
  128: {1,1,1,1,1,1,1}
  132: {1,1,2,5}
		

Crossrefs

This is a transformation of A377783 (union A378040, differences A377784).
Note also A377783 restricts A120327 (differences A378039) to the primes.
Terms appearing twice are A378083.
Terms not appearing at all are A378084.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A070321 gives the greatest squarefree number up to n.
A071403(n) = A013928(prime(n)) counts squarefree numbers < prime(n).
A378086(n) = A057627(prime(n)) counts nonsquarefree numbers < prime(n).
Cf. A112926 (diffs A378037), opposite A112925 (diffs A378038).
Cf. A378032 (diffs A378034), restriction of A378033 (diffs A378036).

Programs

  • Maple
    q:= 3: R:= NULL: flag:= false: count:= 0:
    while count < 100 do
      p:= q; q:= nextprime(q);
      for k from p+1 to q-1 do
        found:= false;
        if not numtheory:-issqrfree(k) then
          if flag then
              count:= count+1; R:= R,k
          fi;
          found:= true; break
        fi;
       od;
       flag:= found;
    od:
    R; # Robert Israel, Nov 20 2024
  • Mathematica
    y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ],{n,100}];
    Select[Most[Union[y]],Count[y,#]==1&]

A379316 Positive integers whose prime indices include a unique squarefree number.

Original entry on oeis.org

2, 3, 5, 11, 13, 14, 17, 21, 29, 31, 35, 38, 41, 43, 46, 47, 57, 59, 67, 69, 73, 74, 77, 79, 83, 91, 95, 98, 101, 106, 109, 111, 113, 115, 119, 122, 127, 137, 139, 142, 147, 149, 157, 159, 163, 167, 178, 179, 181, 183, 185, 191, 194, 199, 203, 206, 209, 211
Offset: 1

Views

Author

Gus Wiseman, Dec 29 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    5: {3}
   11: {5}
   13: {6}
   14: {1,4}
   17: {7}
   21: {2,4}
   29: {10}
   31: {11}
   35: {3,4}
   38: {1,8}
   41: {13}
   43: {14}
   46: {1,9}
		

Crossrefs

For all squarefree parts we have A302478, zeros of A379310.
Positions of 1 in A379306.
For no squarefree parts we have A379307, counted by A114374, strict A256012.
Partitions of this type are counted by A379308, strict A379309.
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379311 prime or 1, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Length[Select[prix[#],SquareFreeQ]]==1&]

A378083 Nonsquarefree numbers appearing exactly twice in A377783 (least nonsquarefree number > prime(n)).

Original entry on oeis.org

4, 8, 32, 44, 104, 140, 284, 464, 572, 620, 644, 824, 860, 1232, 1292, 1304, 1484, 1700, 1724, 1880, 2084, 2132, 2240, 2312, 2384, 2660, 2732, 2804, 3392, 3464, 3560, 3920, 3932, 4004, 4220, 4244, 4424, 4640, 4724, 5012, 5444, 5480, 5504, 5660, 6092, 6200
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2024

Keywords

Comments

Warning: do not confuse with A377783.

Examples

			The terms together with their prime indices begin:
     4: {1,1}
     8: {1,1,1}
    32: {1,1,1,1,1}
    44: {1,1,5}
   104: {1,1,1,6}
   140: {1,1,3,4}
   284: {1,1,20}
   464: {1,1,1,1,10}
   572: {1,1,5,6}
   620: {1,1,3,11}
   644: {1,1,4,9}
   824: {1,1,1,27}
   860: {1,1,3,14}
  1232: {1,1,1,1,4,5}
		

Crossrefs

Subset of A377783 (union A378040, diffs A377784), restriction of A120327 (diffs A378039).
Terms appearing once are A378082.
Terms not appearing at all are A378084.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A071403(n) = A013928(prime(n)) counts squarefree numbers < prime(n).
A378086(n) = A057627(prime(n)) counts nonsquarefree numbers < prime(n).
Cf. A112926 (diffs A378037), opposite A112925 (diffs A378038).
Cf. A378032 (diffs A378034), restriction of A378033 (diffs A378036).

Programs

  • Mathematica
    y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ[#]&],{n,1000}];
    Select[Union[y],Count[y,#]==2&]

A379307 Positive integers whose prime indices include no squarefree numbers.

Original entry on oeis.org

1, 7, 19, 23, 37, 49, 53, 61, 71, 89, 97, 103, 107, 131, 133, 151, 161, 173, 193, 197, 223, 227, 229, 239, 251, 259, 263, 281, 307, 311, 337, 343, 359, 361, 371, 379, 383, 409, 419, 427, 433, 437, 457, 463, 479, 497, 503, 521, 523, 529, 541, 569, 593, 613, 623
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    1: {}
    7: {4}
   19: {8}
   23: {9}
   37: {12}
   49: {4,4}
   53: {16}
   61: {18}
   71: {20}
   89: {24}
   97: {25}
  103: {27}
  107: {28}
  131: {32}
  133: {4,8}
  151: {36}
  161: {4,9}
  173: {40}
		

Crossrefs

Partitions of this type are counted by A114374, strict A256012.
Positions of zero in A379306.
For a unique squarefree part we have A379316, counted by A379308 (strict A379309).
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061398 counts squarefree numbers between primes, zeros A068360.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379310 nonsquarefree, see A302478.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Length[Select[prix[#],SquareFreeQ]]==0&]
Previous Showing 11-20 of 23 results. Next