A378040
Union of A377783(n) = least nonsquarefree number > prime(n).
Original entry on oeis.org
4, 8, 12, 16, 18, 20, 24, 32, 40, 44, 48, 54, 60, 63, 68, 72, 75, 80, 84, 90, 98, 104, 108, 112, 116, 128, 132, 140, 150, 152, 160, 164, 168, 175, 180, 184, 192, 196, 198, 200, 212, 224, 228, 232, 234, 240, 242, 252, 260, 264, 270, 272, 279, 284, 294, 308, 312
Offset: 1
For prime-power instead of nonsquarefree we have
A345531, differences
A377703.
A005117 lists the squarefree numbers.
A070321 gives the greatest squarefree number up to n.
A071403(n) =
A013928(prime(n)) counts squarefree numbers up to prime(n).
A378086(n) =
A057627(prime(n)) counts nonsquarefree numbers up to prime(n).
-
Union[Table[NestWhile[#+1&,Prime[n],SquareFreeQ],{n,100}]]
lns[p_]:=Module[{k=p+1},While[SquareFreeQ[k],k++];k]; Table[lns[p],{p,Prime[Range[70]]}]//Union (* Harvey P. Dale, Jun 12 2025 *)
A377466
Numbers k such that there is more than one perfect power x in the range prime(k) < x < prime(k+1).
Original entry on oeis.org
4, 9, 11, 30, 327, 445, 3512, 7789, 9361, 26519413
Offset: 1
Primes 9 and 10 are 23 and 29, and the interval (24,25,26,27,28) contains two perfect powers (25,27), so 9 is in the sequence.
For a unique prime-power we have
A377287.
These are the positions of terms > 1 in
A377432.
For a unique perfect power we have
A377434.
For no perfect powers we have
A377436.
A000015 gives the least prime power >= n.
A081676 gives the greatest perfect power <= n.
A131605 lists perfect powers that are not prime-powers.
A377468 gives the least perfect power > n.
Cf.
A000720,
A023055,
A031218,
A045542,
A052410,
A053706,
A069623,
A116086,
A116455,
A216765,
A308658,
A336416,
A345531,
A375740,
A376560,
A376561,
A377057.
-
perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
Select[Range[100],Count[Range[Prime[#]+1, Prime[#+1]-1],_?perpowQ]>1&]
-
from itertools import islice
from sympy import prime
from gmpy2 import is_power, next_prime
def A377466_gen(startvalue=1): # generator of terms >= startvalue
k = max(startvalue,1)
p = prime(k)
while (q:=next_prime(p)):
c = 0
for i in range(p+1,q):
if is_power(i):
c += 1
if c>1:
yield k
break
k += 1
p = q
A377466_list = list(islice(A377466_gen(),9)) # Chai Wah Wu, Nov 04 2024
A378084
Nonsquarefree numbers not appearing in A377783 (least nonsquarefree number > prime(n)).
Original entry on oeis.org
9, 25, 27, 28, 36, 45, 49, 50, 52, 56, 64, 76, 81, 88, 92, 96, 99, 100, 117, 120, 121, 124, 125, 126, 135, 136, 144, 147, 148, 153, 156, 162, 169, 171, 172, 176, 188, 189, 204, 207, 208, 216, 220, 225, 236, 243, 244, 245, 248, 250, 256, 261, 268, 275, 276, 280
Offset: 1
The terms together with their prime indices begin:
9: {2,2}
25: {3,3}
27: {2,2,2}
28: {1,1,4}
36: {1,1,2,2}
45: {2,2,3}
49: {4,4}
50: {1,3,3}
52: {1,1,6}
56: {1,1,1,4}
64: {1,1,1,1,1,1}
76: {1,1,8}
81: {2,2,2,2}
88: {1,1,1,5}
92: {1,1,9}
96: {1,1,1,1,1,2}
A005117 lists the squarefree numbers.
A070321 gives the greatest squarefree number up to n.
A112925 gives least squarefree number > prime(n), differences
A378038.
A112926 gives greatest squarefree number < prime(n), differences
A378037.
A377046 encodes k-differences of nonsquarefree numbers, zeros
A377050.
-
nn=100;
y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ[#]&],{n,nn}];
Complement[Select[Range[Prime[nn]],!SquareFreeQ[#]&],y]
A379308
Number of integer partitions of n with a unique squarefree part.
Original entry on oeis.org
0, 1, 1, 1, 0, 2, 2, 2, 0, 3, 5, 5, 1, 6, 9, 9, 2, 10, 14, 18, 6, 18, 24, 30, 11, 28, 39, 47, 24, 48, 63, 76, 41, 74, 95, 118, 65, 120, 149, 181, 107, 181, 221, 266, 169, 266, 335, 398, 262, 394, 487, 578, 391, 578, 697, 844, 592, 834, 997, 1198, 867
Offset: 0
The a(1) = 1 through a(11) = 5 partitions:
(1) (2) (3) . (5) (6) (7) . (5,4) (10) (11)
(4,1) (4,2) (4,3) (8,1) (6,4) (7,4)
(4,4,1) (8,2) (8,3)
(9,1) (9,2)
(4,4,2) (4,4,3)
A377038 gives k-th differences of squarefree numbers.
A379310 counts nonsquarefree prime indices.
Cf.
A000586,
A000607,
A002095,
A013928,
A023895,
A034891,
A072284,
A073247,
A120327,
A175804,
A376657,
A377430.
-
Table[Length[Select[IntegerPartitions[n],Count[#,_?SquareFreeQ]==1&]],{n,0,30}]
A379309
Number of strict integer partitions of n with a unique squarefree part.
Original entry on oeis.org
0, 1, 1, 1, 0, 2, 2, 2, 0, 2, 4, 4, 1, 4, 7, 7, 2, 6, 8, 11, 4, 9, 13, 17, 7, 13, 20, 22, 13, 20, 29, 33, 21, 29, 40, 47, 27, 41, 56, 64, 42, 59, 77, 85, 60, 74, 104, 115, 83, 101, 141, 155, 113, 138, 179, 206, 156, 183, 236, 272, 212, 239, 309, 343, 282, 315
Offset: 0
The a(9) = 2 through a(15) = 7 partitions:
(5,4) (10) (11) (9,3) (13) (14) (15)
(8,1) (6,4) (7,4) (8,5) (8,6) (8,7)
(8,2) (8,3) (12,1) (9,5) (9,6)
(9,1) (9,2) (8,4,1) (10,4) (11,4)
(12,2) (12,3)
(8,4,2) (8,4,3)
(9,4,1) (9,4,2)
A377038 gives k-th differences of squarefree numbers.
A379310 counts nonsquarefree prime indices.
Cf.
A000586,
A000607,
A002095,
A023895,
A034891,
A036497,
A072284,
A073247,
A096258,
A204389,
A377430.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,_?SquareFreeQ]==1&]],{n,0,30}]
-
lista(nn) = my(r=1, s=0); for(k=1, nn, if(issquarefree(k), s+=x^k, r*=1+x^k)); concat(0, Vec(r*s+O(x^(1+nn)))); \\ Jinyuan Wang, Feb 21 2025
A377288
Numbers k such that there are exactly two prime-powers between prime(k)+1 and prime(k+1)-1.
Original entry on oeis.org
4, 9, 30, 327, 3512
Offset: 1
Primes 9 and 10 are 23 and 29, and the interval (24, 25, 26, 27, 28) contains the prime-powers 25 and 27, so 9 is in the sequence.
The corresponding primes are
A053706.
The nearest prime-power before prime(n)-1 is
A065514, difference
A377289.
The nearest prime-power after prime(n)+1 is
A345531, difference
A377281.
For no prime-powers we have
A377286.
For exactly one prime-power we have
A377287.
A000015 gives the least prime-power >= n.
A031218 gives the greatest prime-power <= n.
Cf.
A001597,
A002808,
A024619,
A053707,
A064113,
A065890,
A075526,
A095195,
A224363,
A276781,
A376596,
A376597,
A377282.
A378082
Terms appearing only once in A377783 = least nonsquarefree number > prime(n).
Original entry on oeis.org
12, 16, 18, 20, 24, 40, 48, 54, 60, 63, 68, 72, 75, 80, 84, 90, 98, 108, 112, 116, 128, 132, 150, 152, 160, 164, 168, 175, 180, 184, 192, 196, 198, 200, 212, 224, 228, 232, 234, 240, 242, 252, 260, 264, 270, 272, 279, 294, 308, 312, 315, 320, 332, 338, 348
Offset: 1
The terms together with their prime indices begin:
12: {1,1,2}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
40: {1,1,1,3}
48: {1,1,1,1,2}
54: {1,2,2,2}
60: {1,1,2,3}
63: {2,2,4}
68: {1,1,7}
72: {1,1,1,2,2}
75: {2,3,3}
80: {1,1,1,1,3}
84: {1,1,2,4}
90: {1,2,2,3}
98: {1,4,4}
108: {1,1,2,2,2}
112: {1,1,1,1,4}
116: {1,1,10}
128: {1,1,1,1,1,1,1}
132: {1,1,2,5}
Terms not appearing at all are
A378084.
A005117 lists the squarefree numbers.
A070321 gives the greatest squarefree number up to n.
A378086(n) =
A057627(prime(n)) counts nonsquarefree numbers < prime(n).
-
q:= 3: R:= NULL: flag:= false: count:= 0:
while count < 100 do
p:= q; q:= nextprime(q);
for k from p+1 to q-1 do
found:= false;
if not numtheory:-issqrfree(k) then
if flag then
count:= count+1; R:= R,k
fi;
found:= true; break
fi;
od;
flag:= found;
od:
R; # Robert Israel, Nov 20 2024
-
y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ],{n,100}];
Select[Most[Union[y]],Count[y,#]==1&]
A379316
Positive integers whose prime indices include a unique squarefree number.
Original entry on oeis.org
2, 3, 5, 11, 13, 14, 17, 21, 29, 31, 35, 38, 41, 43, 46, 47, 57, 59, 67, 69, 73, 74, 77, 79, 83, 91, 95, 98, 101, 106, 109, 111, 113, 115, 119, 122, 127, 137, 139, 142, 147, 149, 157, 159, 163, 167, 178, 179, 181, 183, 185, 191, 194, 199, 203, 206, 209, 211
Offset: 1
The terms together with their prime indices begin:
2: {1}
3: {2}
5: {3}
11: {5}
13: {6}
14: {1,4}
17: {7}
21: {2,4}
29: {10}
31: {11}
35: {3,4}
38: {1,8}
41: {13}
43: {14}
46: {1,9}
A008966 is the characteristic function for the squarefree numbers.
Other counts of prime indices:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],Length[Select[prix[#],SquareFreeQ]]==1&]
A378083
Nonsquarefree numbers appearing exactly twice in A377783 (least nonsquarefree number > prime(n)).
Original entry on oeis.org
4, 8, 32, 44, 104, 140, 284, 464, 572, 620, 644, 824, 860, 1232, 1292, 1304, 1484, 1700, 1724, 1880, 2084, 2132, 2240, 2312, 2384, 2660, 2732, 2804, 3392, 3464, 3560, 3920, 3932, 4004, 4220, 4244, 4424, 4640, 4724, 5012, 5444, 5480, 5504, 5660, 6092, 6200
Offset: 1
The terms together with their prime indices begin:
4: {1,1}
8: {1,1,1}
32: {1,1,1,1,1}
44: {1,1,5}
104: {1,1,1,6}
140: {1,1,3,4}
284: {1,1,20}
464: {1,1,1,1,10}
572: {1,1,5,6}
620: {1,1,3,11}
644: {1,1,4,9}
824: {1,1,1,27}
860: {1,1,3,14}
1232: {1,1,1,1,4,5}
Terms not appearing at all are
A378084.
A005117 lists the squarefree numbers.
A378086(n) =
A057627(prime(n)) counts nonsquarefree numbers < prime(n).
Cf.
A053797,
A053806,
A070321,
A072284,
A112929,
A120992,
A224363,
A337030,
A377430,
A377431,
A377703.
-
y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ[#]&],{n,1000}];
Select[Union[y],Count[y,#]==2&]
A379307
Positive integers whose prime indices include no squarefree numbers.
Original entry on oeis.org
1, 7, 19, 23, 37, 49, 53, 61, 71, 89, 97, 103, 107, 131, 133, 151, 161, 173, 193, 197, 223, 227, 229, 239, 251, 259, 263, 281, 307, 311, 337, 343, 359, 361, 371, 379, 383, 409, 419, 427, 433, 437, 457, 463, 479, 497, 503, 521, 523, 529, 541, 569, 593, 613, 623
Offset: 1
The terms together with their prime indices begin:
1: {}
7: {4}
19: {8}
23: {9}
37: {12}
49: {4,4}
53: {16}
61: {18}
71: {20}
89: {24}
97: {25}
103: {27}
107: {28}
131: {32}
133: {4,8}
151: {36}
161: {4,9}
173: {40}
A008966 is the characteristic function for the squarefree numbers.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
Cf.
A000720,
A013928,
A038550,
A057627,
A068361,
A070321,
A071403,
A072284,
A087436,
A112929,
A377430,
A378086.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],Length[Select[prix[#],SquareFreeQ]]==0&]
Comments