cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A383507 Number of Wilf and conjugate Wilf integer partitions of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 6, 7, 9, 12, 14, 19, 20, 27, 30, 31, 40, 50, 56, 68, 76, 86, 112, 126, 139, 170, 197, 216, 251, 297, 317, 378, 411, 466, 521, 607, 621, 745, 791, 892, 975, 1123, 1163, 1366, 1439, 1635, 1757, 2021, 2080, 2464, 2599, 2882, 3116, 3572, 3713
Offset: 0

Views

Author

Gus Wiseman, May 14 2025

Keywords

Comments

An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The a(1) = 1 through a(8) = 9 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (322)      (44)
                    (1111)  (11111)  (222)     (331)      (332)
                                     (411)     (511)      (611)
                                     (3111)    (4111)     (2222)
                                     (111111)  (31111)    (5111)
                                               (1111111)  (41111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

A048768 gives Look-and-Say fixed points, counted by A217605.
A098859 counts Wilf partitions, ranks A130091, conjugate A383512.
A239455 counts Look-and-Say partitions, complement A351293.
A325349 counts partitions with distinct augmented differences, ranks A325366.
A336866 counts non Wilf partitions, ranks A130092, conjugate A383513.
A381431 is the section-sum transform, union A381432, complement A381433.
A383534 gives 0-prepended differences by rank, see A325351.
A383709 counts Wilf partitions with distinct 0-appended differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#] && UnsameQ@@DeleteCases[Differences[Append[#,0]],0]&]],{n,0,30}]

Formula

These partitions have Heinz numbers A130091 /\ A383512.

A383514 Heinz numbers of non Wilf section-sum partitions.

Original entry on oeis.org

10, 14, 15, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 130, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 170, 177, 178, 182, 183, 185, 187, 190
Offset: 1

Views

Author

Gus Wiseman, May 18 2025

Keywords

Comments

First differs from A384007 in having 1000.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different, ranked by A130091.
An integer partition is section-sum iff it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.

Examples

			The terms together with their prime indices begin:
    10: {1,3}    57: {2,8}      94: {1,15}
    14: {1,4}    58: {1,10}     95: {3,8}
    15: {2,3}    62: {1,11}    100: {1,1,3,3}
    22: {1,5}    65: {3,6}     106: {1,16}
    26: {1,6}    69: {2,9}     111: {2,12}
    33: {2,5}    74: {1,12}    115: {3,9}
    34: {1,7}    77: {4,5}     118: {1,17}
    35: {3,4}    82: {1,13}    119: {4,7}
    38: {1,8}    85: {3,7}     122: {1,18}
    39: {2,6}    86: {1,14}    123: {2,13}
    46: {1,9}    87: {2,10}    129: {2,14}
    51: {2,7}    91: {4,6}     130: {1,3,6}
    55: {3,5}    93: {2,11}    133: {4,8}
		

Crossrefs

Ranking sequences are shown in parentheses below.
For Look-and-Say instead of section-sum we have A351592 (A384006).
These partitions are counted by A383506.
The Look-and-Say case is A383511 (A383518).
For Wilf instead of non Wilf we have A383519 (A383520).
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A381431 is the section-sum transform.
A383508 counts partitions that are both Look-and-Say and section-sum (A383515).
A383509 counts partitions that are Look-and-Say but not section-sum (A383516).
A383509 counts partitions that are not Look-and-Say but are section-sum (A384007).
A383510 counts partitions that are neither Look-and-Say nor section-sum (A383517).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],disjointFamilies[conj[prix[#]]]!={}&&!UnsameQ@@Last/@FactorInteger[#]&]

A383519 Number of section-sum partitions of n that have all distinct multiplicities (Wilf).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 6, 7, 9, 12, 14, 19, 21, 27, 30, 33, 41, 50, 57, 68, 79, 89, 112, 126, 144, 172, 198, 220, 257, 298, 327, 383, 423, 477, 533, 621, 650, 760, 816, 920, 1013
Offset: 0

Views

Author

Gus Wiseman, May 19 2025

Keywords

Comments

An integer partition is section-sum iff it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.
An integer partition is Wilf iff its multiplicities are all different (ranked by A130091).

Examples

			The a(1) = 1 through a(8) = 9 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (322)      (44)
                    (1111)  (11111)  (222)     (331)      (332)
                                     (411)     (511)      (611)
                                     (3111)    (4111)     (2222)
                                     (111111)  (31111)    (5111)
                                               (1111111)  (41111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

Ranking sequences are shown in parentheses below.
For Look-and-Say instead of section-sum we have A098859 (A130091), conjugate (A383512).
For non Wilf instead of Wilf we have A383506 (A383514).
These partitions are ranked by (A383520).
A000041 counts integer partitions, strict A000009.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295).
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],disjointFamilies[conj[#]]!={}&&UnsameQ@@Length/@Split[#]&]],{n,0,15}]

A381439 Numbers whose exponent of 2 in their canonical prime factorization is not larger than all the other exponents.

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89
Offset: 1

Views

Author

Gus Wiseman, Mar 02 2025

Keywords

Comments

First differs from A335740 in lacking 72, which has prime indices {1,1,1,2,2} and section-sum partition (3,3,1).
Also numbers whose section-sum partition of prime indices (A381436) ends with a number > 1.
Includes all squarefree numbers (A005117) except 2.

Examples

			The terms together with their prime indices begin:
     3: {2}        25: {3,3}        45: {2,2,3}
     5: {3}        26: {1,6}        46: {1,9}
     6: {1,2}      27: {2,2,2}      47: {15}
     7: {4}        29: {10}         49: {4,4}
     9: {2,2}      30: {1,2,3}      50: {1,3,3}
    10: {1,3}      31: {11}         51: {2,7}
    11: {5}        33: {2,5}        53: {16}
    13: {6}        34: {1,7}        54: {1,2,2,2}
    14: {1,4}      35: {3,4}        55: {3,5}
    15: {2,3}      36: {1,1,2,2}    57: {2,8}
    17: {7}        37: {12}         58: {1,10}
    18: {1,2,2}    38: {1,8}        59: {17}
    19: {8}        39: {2,6}        61: {18}
    21: {2,4}      41: {13}         62: {1,11}
    22: {1,5}      42: {1,2,4}      63: {2,2,4}
    23: {9}        43: {14}         65: {3,6}
		

Crossrefs

The LHS (exponent of 2) is A007814.
The complement is A360013 = 2*A360015 (if we prepend 1), counted by A241131 (shifted right and starting with 1 instead of 0).
The case of equality is A360014, inclusive A360015.
The RHS (greatest exponent of an odd prime factor) is A375669.
These are positions of terms > 1 in A381437.
Partitions of this type are counted by A381544.
A000040 lists the primes, differences A001223.
A051903 gives greatest prime exponent, least A051904.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A381436 gives section-sum partition of prime indices, Heinz number A381431.
A381438 counts partitions by last part part of section-sum partition.

Programs

  • Mathematica
    Select[Range[100],FactorInteger[2*#][[1,2]]-1<=Max@@Last/@Rest[FactorInteger[2*#]]&]

Formula

Positive integers n such that A007814(n) <= A375669(n).

A382775 Least number appearing n times in A048767 (rank of Look-and-Say partition of prime indices).

Original entry on oeis.org

6, 1, 8, 32, 64, 128, 256, 6144, 512, 27648, 1024, 73728, 2048, 147456, 165888, 4096, 248832, 196608, 8192, 497664, 1119744, 393216, 16384, 2239488
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2025

Keywords

Comments

Also the position of first appearance of n in A382525 (number of times n appears in A048767).
The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. Hence, the multiplicity of k in the Look-and-Say partition of y is the sum of all parts that appear exactly k times. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms together with their prime indices begin:
       6: {1,2}
       1: {}
       8: {1,1,1}
      32: {1,1,1,1,1}
      64: {1,1,1,1,1,1}
     128: {1,1,1,1,1,1,1}
     256: {1,1,1,1,1,1,1,1}
    6144: {1,1,1,1,1,1,1,1,1,1,1,2}
     512: {1,1,1,1,1,1,1,1,1}
   27648: {1,1,1,1,1,1,1,1,1,1,2,2,2}
    1024: {1,1,1,1,1,1,1,1,1,1}
   73728: {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
    2048: {1,1,1,1,1,1,1,1,1,1,1}
  147456: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
  165888: {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
    4096: {1,1,1,1,1,1,1,1,1,1,1,1}
  248832: {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
		

Crossrefs

Positions of first appearances in A382525.
The Look-and-Say partition is ranked by A048767, listed by A381440.
Look-and-Say partitions are counted by A239455, complement A351293.
Look-and-Say partitions are ranked by A351294.
Non-Look-and-Say partitions are ranked by A351295, conjugate A381433.
The section-sum partition is ranked by A381431, listed by A381436.
Section-sum partitions are ranked by A381432.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.

Programs

  • Mathematica
    stp[y_]:=Select[Tuples[Select[IntegerPartitions[#], UnsameQ@@#&]&/@y],UnsameQ@@Join@@#&];
    z=Table[Length[stp[Last/@FactorInteger[n]]],{n,10000}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    Table[Position[z,k][[1,1]],{k,0,mnrm[z+1]-1}]

A383535 Heinz number of the positive first differences of the 0-prepended prime indices of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 4, 7, 2, 3, 6, 11, 4, 13, 10, 6, 2, 17, 4, 19, 6, 9, 14, 23, 4, 5, 22, 3, 10, 29, 8, 31, 2, 15, 26, 10, 4, 37, 34, 21, 6, 41, 12, 43, 14, 6, 38, 47, 4, 7, 6, 33, 22, 53, 4, 15, 10, 39, 46, 59, 8, 61, 58, 9, 2, 25, 20, 67, 26, 51, 12, 71, 4, 73
Offset: 1

Views

Author

Gus Wiseman, May 21 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Also Heinz number of the first differences of the distinct 0-prepended prime indices of n.

Examples

			The terms together with their prime indices begin:
     1: {}        2: {1}        31: {11}       38: {1,8}
     2: {1}      17: {7}         2: {1}        47: {15}
     3: {2}       4: {1,1}      15: {2,3}       4: {1,1}
     2: {1}      19: {8}        26: {1,6}       7: {4}
     5: {3}       6: {1,2}      10: {1,3}       6: {1,2}
     4: {1,1}     9: {2,2}       4: {1,1}      33: {2,5}
     7: {4}      14: {1,4}      37: {12}       22: {1,5}
     2: {1}      23: {9}        34: {1,7}      53: {16}
     3: {2}       4: {1,1}      21: {2,4}       4: {1,1}
     6: {1,2}     5: {3}         6: {1,2}      15: {2,3}
    11: {5}      22: {1,5}      41: {13}       10: {1,3}
     4: {1,1}     3: {2}        12: {1,1,2}    39: {2,6}
    13: {6}      10: {1,3}      43: {14}       46: {1,9}
    10: {1,3}    29: {10}       14: {1,4}      59: {17}
     6: {1,2}     8: {1,1,1}     6: {1,2}       8: {1,1,1}
		

Crossrefs

For multiplicities instead of differences we have A181819.
Positions of first appearances are A358137.
Positions of squarefree numbers are A383512, counted by A098859.
Positions of nonsquarefree numbers are A383513, counted by A336866.
These are Heinz numbers of rows of A383534.
A000040 lists the primes, differences A001223.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A320348 counts strict partitions with distinct 0-appended differences, ranks A325388.
A325324 counts partitions with distinct 0-appended differences, ranks A325367.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@Prime/@DeleteCases[Differences[Prepend[prix[n],0]],0],{n,100}]

Formula

A001222(a(n)) = A001221(n).
A056239(a(n)) = A061395(n).
A055396(a(n)) = A055396(n).
A061395(a(n)) = A241919(n).

A384009 Irregular triangle read by rows where row n lists the positive first differences of the prime indices of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 2, 2, 4, 1, 5, 3, 1, 1, 3, 6, 1, 1, 7, 4, 2, 1, 2, 4, 1, 8, 1, 2, 5, 5, 1, 2, 3, 6, 9, 1, 1, 10, 2, 3, 1, 3, 6, 7, 2, 1, 1, 11, 1, 7, 1, 1, 4, 2, 12, 1, 2, 4, 13, 8, 4, 1, 1, 2, 8, 9, 14, 5, 1, 3, 3, 2, 1, 5, 5, 1, 1, 15, 1, 2, 2, 10, 3, 1, 6, 6
Offset: 1

Views

Author

Gus Wiseman, May 23 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 60 are {1,1,2,3}, differences (0,1,1), positive (1,1).
Rows begin:
     1: ()     16: ()       31: ()       46: (8)
     2: ()     17: ()       32: ()       47: ()
     3: ()     18: (1)      33: (3)      48: (1)
     4: ()     19: ()       34: (6)      49: ()
     5: ()     20: (2)      35: (1)      50: (2)
     6: (1)    21: (2)      36: (1)      51: (5)
     7: ()     22: (4)      37: ()       52: (5)
     8: ()     23: ()       38: (7)      53: ()
     9: ()     24: (1)      39: (4)      54: (1)
    10: (2)    25: ()       40: (2)      55: (2)
    11: ()     26: (5)      41: ()       56: (3)
    12: (1)    27: ()       42: (1,2)    57: (6)
    13: ()     28: (3)      43: ()       58: (9)
    14: (3)    29: ()       44: (4)      59: ()
    15: (1)    30: (1,1)    45: (1)      60: (1,1)
		

Crossrefs

Row-lengths are A001221(n) - 1, sums A243055.
For multiplicities instead of differences we have A124010 (prime signature).
Positions of non-strict rows are a subset of A325992.
Including difference 0 gives A355536, 0-prepended A287352.
The 0-prepended version is A383534.
A000040 lists the primes, differences A001223.
A056239 adds up prime indices, row sums of A112798, counted by A001222.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[DeleteCases[Differences[prix[n]],0],{n,100}]

A384180 Irregular triangle read by rows where row n lists the Heinz numbers of all uniform (equal multiplicities) and normal (covering an initial interval) multisets of length n.

Original entry on oeis.org

2, 4, 6, 8, 30, 16, 36, 210, 32, 2310, 64, 216, 900, 30030, 128, 510510, 256, 1296, 44100, 9699690, 512, 27000, 223092870, 1024, 7776, 5336100, 6469693230, 2048, 200560490130, 4096, 46656, 810000, 9261000, 901800900, 7420738134810, 8192, 304250263527210
Offset: 1

Views

Author

Gus Wiseman, May 25 2025

Keywords

Comments

A permutation of A100778 (powers of primorials).
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is uniform iff all parts appear with the same multiplicity, and normal iff it covers an initial interval of positive integers.

Examples

			The uniform normal multisets of length 6 are: {1,1,1,1,1,1}, {1,1,1,2,2,2}, {1,1,2,2,3,3}, {1,2,3,4,5,6}, so row 6 is: 64, 216, 900, 30030.
Triangle begins:
    2
    4       6
    8      30
   16      36    210
   32    2310
   64     216    900    30030
  128  510510
  256    1296  44100  9699690
		

Crossrefs

Row lengths are A000005.
Final term in each row is A002110.
The union is A100778.
Reversing rows gives A322792.
For just normal multisets we have A324939.
A047966 counts uniform partitions.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A098859 counts Wilf partitions, ranks A130091, conjugate A383512.
A381431 is the section-sum transform.

Programs

  • Mathematica
    Table[Table[Times@@Prime/@Range[d]^(n/d),{d,Divisors[n]}],{n,10}]
Previous Showing 31-38 of 38 results.