cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A383089 Numbers whose prime indices have more than one permutation with all equal run-lengths.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2025

Keywords

Comments

First differs from A362606 (complement A359178 with 1) in having 180 and lacking 240.
First differs from A130092 (complement A130091) in having 360 and lacking 240.
First differs from A351295 (complement A351294) in having 216 and lacking 240.
Includes all squarefree numbers A005117 except the primes A000040.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 36 are {1,1,2,2}, and we have 4 permutations each having all equal run-lengths: (1,1,2,2), (1,2,1,2), (2,2,1,1), (2,1,2,1), so 36 is in the sequence.
The terms together with their prime indices begin:
    6: {1,2}
   10: {1,3}
   14: {1,4}
   15: {2,3}
   21: {2,4}
   22: {1,5}
   26: {1,6}
   30: {1,2,3}
   33: {2,5}
   34: {1,7}
   35: {3,4}
   36: {1,1,2,2}
   38: {1,8}
   39: {2,6}
   42: {1,2,4}
   46: {1,9}
   51: {2,7}
   55: {3,5}
   57: {2,8}
   58: {1,10}
   60: {1,1,2,3}
		

Crossrefs

Positions of terms > 1 in A382857 (distinct A382771), zeros A382879, ones A383112.
For run-sums instead of lengths we have A383015, counted by A383097.
Partitions of this type are counted by A383090.
The complement is A383091, counted by A383092, just zero A382915, just one A383094.
For distinct instead of equal run-sums we have A383113.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A047966 counts partitions with equal run-lengths, compositions A329738.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A098859 counts partitions with distinct run-lengths, ranks A130091.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    Select[Range[100],Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[#]], SameQ@@Length/@Split[#]&]]>1&]

Formula

The complement is A383091 = A382879 \/ A383112, counted by A382915 + A383094.

A383094 Number of integer partitions of n having exactly one permutation with all equal run-lengths.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 5, 6, 9, 7, 11, 10, 13, 12, 17, 14, 21, 16, 21, 18, 27, 22, 29, 22, 34, 25, 35, 28, 41, 28, 43, 30, 48, 38, 47, 38, 55, 36, 53, 46, 64, 40, 67, 42, 69, 54, 65, 46, 84, 51, 75, 62, 83, 52, 86, 62, 94, 70, 83, 58, 111, 60, 89, 80, 106, 74, 115, 66, 111
Offset: 0

Views

Author

Gus Wiseman, Apr 20 2025

Keywords

Examples

			The partition (222211) has exactly one permutation with all equal run-lengths: (221122), so is counted under a(10).
The a(1) = 1 through a(8) = 9 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (11111)  (411)     (511)      (422)
                                     (111111)  (22111)    (611)
                                               (1111111)  (2222)
                                                          (22211)
                                                          (221111)
                                                          (11111111)
		

Crossrefs

The complement is ranked by A382879 \/ A383089.
For no choices we have A382915, ranks A382879.
For at least one choice we have A383013, for run-sums A383098, ranks A383110.
For more than one choice we have A383090, ranks A383089.
For at most one choice we have A383092, ranks A383091.
For run-sums instead of lengths we have A383095, ranks A383099.
Partitions of this type are ranked by A383112 = positions of 1 in A382857.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Select[Permutations[#], SameQ@@Length/@Split[#]&]]==1&]],{n,0,20}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A384347 Heinz numbers of integer partitions with exactly two possible ways to choose disjoint strict partitions of each part.

Original entry on oeis.org

5, 7, 21, 22, 25, 26, 33, 35, 39, 49, 102, 114, 130, 147, 154, 165, 170, 175, 190, 195, 231, 238, 242, 255, 275, 285
Offset: 1

Views

Author

Gus Wiseman, May 27 2025

Keywords

Comments

Positions of 2 in A383706.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The prime indices of 275 are {3,3,5}, with two ways to choose disjoint strict partitions of each part: ((3),(2,1),(5)) and ((2,1),(3),(5)). Hence 275 is in the sequence.
The terms together with their prime indices begin:
    5: {3}
    7: {4}
   21: {2,4}
   22: {1,5}
   25: {3,3}
   26: {1,6}
   33: {2,5}
   35: {3,4}
   39: {2,6}
   49: {4,4}
  102: {1,2,7}
  114: {1,2,8}
  130: {1,3,6}
  147: {2,4,4}
  154: {1,4,5}
  165: {2,3,5}
		

Crossrefs

The case of no choices is A382912, counted by A383710, odd case A383711.
These are positions of 2 in A383706.
The case of no proper choices is A383707, counted by A179009.
The case of some proper choice is A384321, strict A384322, count A384317, strict A384318.
These partitions are counted by A384323, strict A384319.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
A357982 counts strict partitions of prime indices, non-strict A299200.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    Select[Range[100],Length[pof[prix[#]]]==2&]

A386581 Number of normal multisets of size n with no permutation having all distinct run lengths.

Original entry on oeis.org

0, 0, 1, 1, 5, 11, 20, 51, 108, 229, 448, 953, 1940, 3951, 7986, 15972
Offset: 0

Views

Author

Gus Wiseman, Aug 12 2025

Keywords

Comments

A multiset is normal iff it covers an initial interval of positive integers.

Examples

			The normal multiset m = {1,1,1,2,2,2} has permutation (1,2,2,2,1,1) with run lengths (1,3,2), so m is not counted under a(6).
The a(1) = 0 through a(6) = 20 multisets:
  .  (12)  (123)  (1122)  (11123)  (111123)
                  (1123)  (11223)  (111234)
                  (1223)  (11233)  (112233)
                  (1233)  (11234)  (112234)
                  (1234)  (12223)  (112334)
                          (12233)  (112344)
                          (12234)  (112345)
                          (12333)  (122223)
                          (12334)  (122234)
                          (12344)  (122334)
                          (12345)  (122344)
                                   (122345)
                                   (123333)
                                   (123334)
                                   (123344)
                                   (123345)
                                   (123444)
                                   (123445)
                                   (123455)
                                   (123456)
		

Crossrefs

The complement for partitions appears to be A239455, ranks A351294 or A381432.
For integer partitions we appear to have A351293, ranks A351295 or A381433.
For weakly decreasing multiplicities we appear to have A383710, ranks A382912.
The complement is counted by A386580, see A383708.
A032020 counts normal multisets with distinct multiplicities.
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    nodrm[y_]:=Select[Permutations[y],UnsameQ@@Length/@Split[#]&];
    Table[Length[Select[allnorm[n],nodrm[#]=={}&]],{n,0,7}]

A382858 Number of ways to permute a multiset whose multiplicities are the prime indices of n so that the run-lengths are all equal.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 6, 4, 0, 1, 6, 1, 0, 1, 24, 1, 12, 1, 2, 1, 0, 1, 36, 4, 0, 36, 0, 1, 10, 1, 120, 0, 0, 1, 84, 1, 0, 0, 24, 1, 3, 1, 0, 38, 0, 1, 240, 6, 18, 0, 0, 1, 246, 0, 6, 0, 0, 1, 96, 1, 0, 30, 720, 1, 0, 1, 0, 0, 14, 1, 660, 1, 0, 74, 0, 1, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Comments

This described multiset (row n of A305936, Heinz number A181821) is generally not the same as the multiset of prime indices of n (A112798). For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(9) = 4 permutations are:
  (1,1,2,2)
  (1,2,1,2)
  (2,1,2,1)
  (2,2,1,1)
		

Crossrefs

The anti-run case is A335125.
These permutations for factorials are counted by A335407, distinct A382774.
For distinct instead of equal run-lengths we have A382773.
For prime indices we have A382857 (firsts A382878), distinct A382771 (firsts A382772).
Positions of 0 are A382914, signature restriction of A382915.
A003963 gives product of prime indices.
A140690 lists numbers whose binary expansion has equal run-lengths, distinct A044813.
A047966 counts partitions with equal multiplicities, distinct A098859.
A056239 adds up prime indices, row sums of A112798.
A304442 counts partitions with equal run-sums, ranks A353833.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
A382913 ranks Look-and-Say partitions by signature, complement A382912.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Length[Select[Permutations[nrmptn[n]],SameQ@@Length/@Split[#]&]],{n,100}]

Formula

a(n) = A382857(A181821(n)) = A382857(A304660(n)).

A386580 Number of normal multisets of size n having a permutation with all distinct run lengths.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 12, 13, 20, 27, 64, 71, 108, 145, 206, 412
Offset: 0

Views

Author

Gus Wiseman, Aug 07 2025

Keywords

Comments

A multiset is normal iff it covers an initial interval of positive integers.
Conjecture: Also the number of normal multisets of size n having a disjoint family of strict integer partitions, one of each multiplicity.

Examples

			The normal multiset m = {1,1,1,2,2,2} has permutation (1,2,2,2,1,1) with run lengths (1,3,2), so m is counted under a(6).
The a(n) multisets for n = 1..7:
  (1)  (11)  (111)  (1111)  (11111)  (111111)  (1111111)
             (112)  (1112)  (11112)  (111112)  (1111112)
             (122)  (1222)  (11122)  (111122)  (1111122)
                            (11222)  (111222)  (1111222)
                            (12222)  (111223)  (1111223)
                                     (111233)  (1111233)
                                     (112222)  (1112222)
                                     (112223)  (1122222)
                                     (112333)  (1122223)
                                     (122222)  (1123333)
                                     (122233)  (1222222)
                                     (122333)  (1222233)
                                               (1223333)
		

Crossrefs

For integer partitions we appear to have A239455, ranks A351294 or A381432.
For weakly decreasing multiplicities we appear to have A383708.
The complement is counted by A386581, see A383710 (ranks A382912).
A000041 counts integer partitions, strict A000009.
A032020 counts normal multisets with distinct multiplicities, increasing A000009.
A098859 counts partitions with distinct multiplicities, compositions A242882.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    nodrm[y_]:=Select[Permutations[y],UnsameQ@@Length/@Split[#]&];
    Table[Length[Select[allnorm[n],nodrm[#]!={}&]],{n,0,5}]

A383090 Number of integer partitions of n having more than one permutation with all equal run-lengths.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 14, 20, 28, 43, 55, 77, 107, 141, 183, 244, 312, 411, 521, 664, 837, 1069, 1328, 1667, 2069, 2578, 3166, 3929, 4791, 5895, 7168, 8749, 10594, 12883, 15500, 18741, 22493, 27069, 32334, 38760, 46133, 55065, 65367, 77686, 91905, 108927, 128431, 151674
Offset: 0

Views

Author

Gus Wiseman, Apr 19 2025

Keywords

Examples

			The partition (3322221) has 3 permutations with all equal run-lengths: (2323212), (2321232), (2123232), so is counted under a(15).
The partition (3322111111) has 2 permutations with all equal run-lengths: (1133112211), (1122113311), so is counted under a(16).
The a(3) = 1 through a(9) = 14 partitions:
  (21)  (31)  (32)  (42)    (43)    (53)     (54)
              (41)  (51)    (52)    (62)     (63)
                    (321)   (61)    (71)     (72)
                    (2211)  (421)   (431)    (81)
                            (3211)  (521)    (432)
                                    (3221)   (531)
                                    (3311)   (621)
                                    (4211)   (3321)
                                    (32111)  (4221)
                                             (4311)
                                             (5211)
                                             (32211)
                                             (42111)
                                             (222111)
		

Crossrefs

For no choices we have A382915, ranks A382879.
For at least one choice we have A383013, for run-sums A383098, ranks A383110.
Partitions of this type are ranked by A383089 = positions of terms > 1 in A382857.
The complement is A383091, counted by A383092.
For a unique choice we have A383094, ranks A383112.
The complement for run-sums is A383095 + A383096, ranks A383099 \/ A383100.
For run-sums we have A383097, ranked by A383015 = positions of terms > 1 in A382877.
For distinct instead of equal run-lengths we have A383111, ranks A383113.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329738 counts compositions with equal run-lengths, ranks A353744.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Select[Permutations[#], SameQ@@Length/@Split[#]&]]>1&]],{n,0,15}]

Formula

The complement is counted by A383094 + A382915, ranks A383112 \/ A382879.

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A383112 Numbers whose multiset of prime indices has exactly one permutation with all equal run-lengths.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 25, 27, 28, 29, 31, 32, 37, 41, 43, 44, 45, 47, 49, 50, 52, 53, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 81, 83, 89, 92, 97, 98, 99, 101, 103, 107, 108, 109, 113, 116, 117, 121, 124, 125, 127
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
Includes all prime powers A000961.
Are there any terms x such that A001221(x) > 2?

Examples

			The prime indices of 144 are {1,1,1,1,2,2}, of which the only permutation with all equal run-lengths is (1,1,2,2,1,1), so 144 is in the sequence.
The terms together with their prime indices begin:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  11: {5}
  12: {1,1,2}
  13: {6}
  16: {1,1,1,1}
  17: {7}
  18: {1,2,2}
  19: {8}
  20: {1,1,3}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  28: {1,1,4}
  29: {10}
  31: {11}
  32: {1,1,1,1,1}
		

Crossrefs

These are the positions of 1 in A382857, distinct A382771.
The complement is A382879 \/ A383089, counted by A382915 + A383090.
For at most one permutation we have A383091, counted by A383092.
Partitions of this type are counted by A383094.
For run-sums instead of lengths we have A383099, counted by A383095.
A047966 counts partitions with equal run-lengths, ranks A072774.
A056239 adds up prime indices, row sums of A112798.
A098859 counts partitions with distinct run-lengths, ranks A130091.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Permutations[Join @@ ConstantArray@@@FactorInteger[#]], SameQ@@Length/@Split[#]&]]==1&]

A382878 Set of positions of first appearances in A382857 (permutations of prime indices with equal run-lengths).

Original entry on oeis.org

1, 6, 24, 30, 36, 180, 210, 360, 420, 720, 1080, 1260, 1800, 2160, 2310, 2520, 3600, 4620, 5040, 5400, 6300, 7560, 10800, 12600, 13860, 15120, 21600, 25200, 25920, 27000, 27720, 30030, 32400, 37800, 44100, 45360, 46656, 50400, 54000, 55440, 60060, 60480, 64800
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The permutations for n = 6, 720, 36, 25920, 30:
  (1,2)  (1,2,1,2,1,3,1)  (1,1,2,2)  (1,2,1,2,1,2,1,2,1,3,1)  (1,2,3)
  (2,1)  (1,2,1,3,1,2,1)  (1,2,1,2)  (1,2,1,2,1,2,1,3,1,2,1)  (1,3,2)
         (1,3,1,2,1,2,1)  (2,1,2,1)  (1,2,1,2,1,3,1,2,1,2,1)  (2,1,3)
                          (2,2,1,1)  (1,2,1,3,1,2,1,2,1,2,1)  (2,3,1)
                                     (1,3,1,2,1,2,1,2,1,2,1)  (3,1,2)
                                                              (3,2,1)
The terms together with their prime indices begin:
      1: {}
      6: {1,2}
     24: {1,1,1,2}
     30: {1,2,3}
     36: {1,1,2,2}
    180: {1,1,2,2,3}
    210: {1,2,3,4}
    360: {1,1,1,2,2,3}
    420: {1,1,2,3,4}
    720: {1,1,1,1,2,2,3}
   1080: {1,1,1,2,2,2,3}
   1260: {1,1,2,2,3,4}
   1800: {1,1,1,2,2,3,3}
   2160: {1,1,1,1,2,2,2,3}
   2310: {1,2,3,4,5}
   2520: {1,1,1,2,2,3,4}
   3600: {1,1,1,1,2,2,3,3}
		

Crossrefs

Positions of first appearances in A382857 (zeros A382879), by signature A382858.
For distinct run-lengths we have A382772, firsts of A382771 (by signature A382773).
A140690 lists numbers whose binary expansion has equal run-lengths, distinct A044813.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    y=Table[Length[Select[Permutations[Join@@ConstantArray@@@FactorInteger[n]],SameQ@@Length/@Split[#]&]],{n,0,1000}];
    fip[y_]:=Select[Range[Length[y]],!MemberQ[Take[y,#-1],y[[#]]]&];
    fip[Rest[y]]

A383091 Numbers whose prime indices have at most one permutation with all equal run-lengths.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2025

Keywords

Comments

First differs from A359178 (complement A362606) in having 1, 240 and lacking 180.
First differs from A130091 (complement A130092) in having 240 and lacking 360.
First differs from A351294 (complement A351295) in having 240 and lacking 216.
Includes all primes A000040 and prime powers A000961.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 144 are {1,1,1,1,2,2}, with just one permutation with all equal run-lengths (1,1,2,2,1,1), so 144 is in the sequence.
The prime indices of 240 are {1,1,1,1,2,3}, which have no permutation with all equal run-lengths, so 240 is in the sequence.
The terms together with their prime indices begin:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  11: {5}
  12: {1,1,2}
  13: {6}
  16: {1,1,1,1}
  17: {7}
  18: {1,2,2}
  19: {8}
  20: {1,1,3}
  23: {9}
  24: {1,1,1,2}
		

Crossrefs

These are positions of zeros and ones in A382857, just zeros A382879, just ones A383112.
The complement for run-sums instead of lengths is A383015, counted by A383097.
The complement is A383089, counted by A383090.
Partitions of this type are counted by A383092, just zero A382915, just one A383094.
For run-sums instead of lengths we have A383099 \/ A383100, counted by A383095 + A383096.
A047966 counts partitions with equal run-lengths, compositions A329738.
A056239 adds up prime indices, row sums of A112798.
A098859 counts partitions with distinct run-lengths, ranks A130091.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[#]], SameQ@@Length/@Split[#]&]]<=1&]

Formula

Equals A382879 \/ A383112, counted by A382915 + A383094.
Previous Showing 11-20 of 25 results. Next