cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 104 results. Next

A039928 Sum of first n terms of A_n (using absolute values of terms).

Original entry on oeis.org

0, 3, 3, 0, 10, 12, 1, 24, 25, 32, 116, 12, 412, 109, 126, 2389, 12497, 28772, 126, 72795, 247786, 770213, 159378001963452599318, 2169128, 442, 311, 378, 789, 10015050, 75, 74253544, 7881195, 2461717833658872781238383813854943728, 51, 17, 824, 855, 2, 29981, 3087, 215308, 123456790123456790123456790123456790123452, 132813776, 1086162642, 1836311902, 400276874544
Offset: 1

Views

Author

Keywords

Comments

Since the sequences in the OEIS occasionally change their initial terms (for editorial reasons), this is an especially ill-defined sequence! - N. J. A. Sloane, Jan 01 2005
The next term, a(47), is currently unknown. - Jianing Song, Oct 07 2018

Examples

			A000001 (Number of groups of order n) begins 0,... -> a(1) = 0
A000002 (Kolakoski sequence) begins 1, 2,... -> a(2) = 3
A000003 begins 1, 1, 1,... -> a(3) = 3
A000004 (The zero sequence) begins 0, 0, 0, 0,... -> a(4) = 0
A000005 (The number of divisors) begins 1, 2, 2, 3, 2, ... -> a(5) = 10
...
A000010 (Euler totient function) begins 1, 1, 2, 2, 4, 2, 6, 4, 6, ... so a(10) = 1 + 1 + 2 + 2 + 4 + 2 + 6 + 4 + 6 + 4 = 32.
		

Crossrefs

Cf. A031135, A031214, A100543 (uses signed values).

Extensions

Corrected and extended by C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 27 2004
a(1) changed from 1 to 0 and extended by Jianing Song, Oct 06 2018

A048659 Positions of letters in English alphabet (U.S. pronunciation) that rhyme with 'e'.

Original entry on oeis.org

2, 3, 4, 5, 7, 16, 20, 22, 26
Offset: 1

Views

Author

Andrew Coker (andrewc(AT)atu.com.au)

Keywords

Examples

			a(1) = 2 because the first letter that rhymes with 'e' is 'b'.
		

A061727 A000217 interleaved with A061726.

Original entry on oeis.org

1, 4, 3, 12, 6, 30, 10, 50, 15, 60, 21, 84, 28, 140, 36, 180, 45, 180, 55, 220, 66, 330, 78, 390, 91, 364, 105, 420, 120, 600, 136, 680, 153, 612, 171, 684, 190, 950, 210, 1050, 231, 924, 253, 1012, 276, 1380, 300, 1500, 325, 1300, 351, 1404, 378, 1890, 406
Offset: 1

Views

Author

Jason Earls, May 05 2001

Keywords

References

  • Norman Sullivan, Test Your Own IQ, Workman Publishing Co. New York, NY, 1994, pp. 48, 50.

Crossrefs

Programs

  • Mathematica
    Array[{#, (4 + Boole[EvenQ@ #]) #} &@ PolygonalNumber@ # &, 28] // Flatten (* Michael De Vlieger, Jul 01 2018 *)
  • PARI
    { f="b061727.txt"; for (n=1, 1000, a=n*(n + 1)/2; if (a%2, t=a*4, t=a*5); write(f, 2*n - 1, " ", a); write(f, 2*n, " ", t) ) } \\ Harry J. Smith, Jul 27 2009

Extensions

More terms from David Wasserman, Jun 25 2002

A066555 a(n) = next substring in concatenation of even numbers with length n (incl. leading zeros).

Original entry on oeis.org

2, 46, 810, 1214, 16182, 22242, 6283032, 34363840, 424446485, 525456586, 6264666870, 727476788082, 8486889092949, 69810010210410, 610811011211411, 6118120122124126, 12813013213413613, 814014214414614815
Offset: 1

Views

Author

Amarnath Murthy, Dec 17 2001

Keywords

Examples

			a(1)..a(5) = 246810121416182, a(6) = 022242 (leading zero not shown).
		

Crossrefs

Cf. A066553.

Extensions

Edited by Frank Ellermann, Feb 04 2002

A104175 From the words to the song "867-5309/Jenny" by Tommy Tutone.

Original entry on oeis.org

8, 6, 7, 5, 3, 0, 9, 8, 6, 7, 5, 3, 0, 9, 8, 6, 7, 5, 3, 0, 9, 8, 6, 7, 5, 3, 0, 9, 8, 6, 7, 5, 3, 0, 9, 8, 6, 7, 5, 3, 0, 9, 8, 6, 7, 5, 3, 0, 9, 8, 6, 7, 5, 3, 0, 9, 8, 6, 7, 5, 3, 0, 9, 8, 6, 7, 5, 3, 0, 9, 8, 6, 7, 5, 3, 0, 9, 8, 6, 7, 5, 3, 0, 9
Offset: 1

Views

Author

Jonathan Garth Flittner (flittnerj(AT)wlu.edu), Mar 10 2005

Keywords

Examples

			Jenny, Jenny who can I turn to?
You give me something I can hold on to.
I know you'll think I'm like the others before
Who saw your name and number on the wall.
Jenny I've got your number
I need to make you mine
Jenny don't change your number
8 6 7 - 5 3 0 9  (8 6 7 - 5 3 0 9)
8 6 7 - 5 3 0 9  (8 6 7 - 5 3 0 9)
...
		

Crossrefs

Cf. A182369.

Programs

  • Mathematica
    ContinuedFraction[(176189+Sqrt[32325522853])/38946,84]-1 (* Adam P. Goucher, Apr 27 2014 *)
  • Python
    def a(n): return [8, 6, 7, 5, 3, 0, 9][(n-1)%7]
    print([a(n) for n in range(1, 85)]) # Michael S. Branicky, Aug 06 2021

Formula

G.f.: (8 + 6*x + 7*x^2 + 5*x^3 + 3*x^4 + 9*x^6)/(1 - x^7). - Adam P. Goucher, Apr 27 2014

Extensions

Name corrected by Michael S. Branicky, Aug 06 2021

A105328 Digital expansion of e*Pi: numbers from each pair of successive digits.

Original entry on oeis.org

85, 39, 73, 42, 22, 67, 35, 67, 6, 54, 63, 55, 8, 69, 54, 65, 74, 49, 50, 34, 88, 85, 35, 76, 51, 14, 96, 18, 79, 60, 11, 30, 17, 92, 28, 61, 11, 57, 33, 8, 7, 57, 25, 63, 86, 97, 10, 47, 39, 43, 91, 37, 74, 94, 25, 11, 67, 74, 67, 64, 63, 21, 18, 75, 90, 69, 60, 23, 99, 6, 18, 36
Offset: 1

Views

Author

Zak Seidov, Apr 30 2005

Keywords

Programs

  • Mathematica
    Table[FromDigits[Partition[RealDigits[N[e*Pi, 200]][[1]], 2][[i]]], {i, 100}]

A107626 Numbers n such that every digit of both n and n^2 contains a loop (only digits 0,4,6,8,9 in n and n^2).

Original entry on oeis.org

8, 64, 80, 98, 640, 664, 800, 898, 980, 998, 6400, 6640, 6664, 8000, 8980, 8998, 9800, 9980, 9998, 64000, 66400, 66640, 66664, 80000, 89800, 89980, 89998, 98000, 98998, 99800, 99980, 99998, 640000, 664000, 664064, 666400, 666640, 666664, 684908, 800000, 806008
Offset: 1

Views

Author

Zak Seidov, May 18 2005

Keywords

Comments

Corresponding squares in A107627. Cf. A001744 Every digit contains a loop.

Crossrefs

Programs

  • Mathematica
    Do[id=Union[IntegerDigits[n^2], IntegerDigits[n]];If[Count[id, 1]+Count[id, 2]+Count[id, 3]+Count[id, 5]+Count[id, 7]==0, Print[n]], {n, 10000}]
  • PARI
    is_a001744(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 5, 7])==0
    is(n) = is_a001744(n) && is_a001744(n^2) \\ Felix Fröhlich, Sep 09 2019

Extensions

More terms from Felix Fröhlich, Sep 09 2019

A107627 Numbers n such that every digit of n and sqrt(n) contains a loop (only digits 0,4,6,8,9 in n and sqrt(n)).

Original entry on oeis.org

64, 4096, 6400, 9604, 409600, 440896, 640000, 806404, 960400, 996004, 40960000, 44089600, 44408896, 64000000, 80640400, 80964004, 96040000, 99600400, 99960004
Offset: 1

Views

Author

Zak Seidov, May 18 2005

Keywords

Comments

Corresponding square roots in A107626. Cf. A001744 Every digit contains a loop.

Crossrefs

Programs

  • Mathematica
    Do[id=Union[IntegerDigits[n^2], IntegerDigits[n]];If[Count[id, 1]+Count[id, 2]+Count[id, 3]+Count[id, 5]+Count[id, 7]==0, Print[n^2]], {n, 10000}]
    With[{c={0,4,6,8,9}},#^2&/@Select[FromDigits/@Tuples[c,4],SubsetQ[c,IntegerDigits[ #^2]]&]] (* Harvey P. Dale, Oct 01 2023 *)

A114804 The numbers 3^n-1 written in groups of three digits, with leading zeros omitted.

Original entry on oeis.org

282, 680, 242, 728, 218, 665, 601, 968, 259, 48, 177, 146, 531, 440, 159, 432, 247, 829, 681, 434, 890, 643, 46, 720, 129, 140, 162, 387, 420, 488, 116, 226, 146, 634, 867, 844, 1, 46, 35, 320, 231, 381, 59, 608, 941, 431, 788, 262, 824, 295, 364, 808
Offset: 1

Views

Author

Jonathan Vos Post, Feb 18 2006

Keywords

Examples

			2, 8, 26, 80, 242, 728, 2186, ...
		

Crossrefs

Programs

  • Mathematica
    FromDigits/@Partition[Flatten[IntegerDigits/@(3^Range[30]-1)],3] (* Harvey P. Dale, Jul 04 2021 *)

Extensions

Terms recomputed to use the definition equivalent to A114645. - R. J. Mathar, Jun 23 2014

A114807 The numbers 4^n-1 written in groups of three digits, with leading zeros omitted.

Original entry on oeis.org

315, 632, 551, 23, 409, 516, 383, 655, 352, 621, 431, 48, 575, 419, 430, 316, 777, 215, 671, 88, 632, 684, 354, 551, 73, 741, 823, 429, 496, 729, 517, 179, 869, 183, 687, 194, 767, 352, 748, 779, 69, 431, 99, 511, 627, 775, 439, 804, 651, 110, 317, 592, 186, 44
Offset: 1

Views

Author

Jonathan Vos Post, Feb 19 2006

Keywords

Examples

			3, 15, 63, 255, 1023, 4095, 16383, ...
		

Crossrefs

Programs

  • Mathematica
    FromDigits[#] & /@ Partition[ Flatten@ IntegerDigits@ Table[4^n - 1, {n, 22}], 3] (* Robert G. Wilson v, Jun 23 2014 *)
    FromDigits/@Partition[Flatten[IntegerDigits/@(4^Range[30]-1)],3] (* Harvey P. Dale, Jun 03 2025 *)
  • Python
    from itertools import count, islice
    def bgen(): yield from (d for n in count(1) for d in str((1 << 2*n)-1))
    def agen(): g = bgen(); yield from (int("".join(t)) for t in zip(g, g, g))
    print(list(islice(agen(), 54))) # Michael S. Branicky, Dec 25 2022

Extensions

a(4) and following changed by Georg Fischer, Dec 25 2022
Previous Showing 21-30 of 104 results. Next