cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 172 results. Next

A229818 Even bisection gives sequence a itself, n->a(2*(3*n+k)-1) gives k-th differences of a for k=1..3 with a(n)=n for n<2.

Original entry on oeis.org

0, 1, 1, -1, 1, -1, -1, 0, 1, -2, -1, 6, -1, -2, 0, 4, 1, -8, -2, 2, -1, -4, 6, 6, -1, -2, -2, 2, 0, -1, 4, 0, 1, 1, -8, -1, -2, 1, 2, 0, -1, -4, -4, 1, 6, -4, 6, 8, -1, -3, -2, 4, -2, 2, 2, 1, 0, 6, -1, -20, 4, 7, 0, -14, 1, 20, 1, -7, -8, 6, -1, -3, -2, -1
Offset: 0

Views

Author

Alois P. Heinz, Sep 30 2013

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local m, q, r;
          m:= (irem(n, 6, 'q')+1)/2;
          `if`(n<2, n, `if`(irem(n, 2, 'r')=0, a(r),
          add(a(q+m-j)*(-1)^j*binomial(m, j), j=0..m)))
        end:
    seq(a(n), n=0..100);
  • Mathematica
    a[n_] := a[n] = Module[{m, q, r, q2, r2}, {q, r} = QuotientRemainder[n, 6]; m = (r+1)/2; If[n<2, n, {q2, r2} = QuotientRemainder[n, 2]; If[r2 == 0, a[q2], Sum[a[q+m-j]*(-1)^j*Binomial[m, j], {j, 0, m}]]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 08 2017, translated from Maple *)
  • PARI
    {M=Map(); a(n)= n&&n>>=valuation(n, 2); my(r); mapisdefined(M, n, &r) && return(r); r=if(n<2, n, my(m=n%6, k=n\6); if(1==m, a(k+1)-a(k), 3==m, a(k+2)-2*a(k+1)+a(k), a(k+3)-3*a(k+2)+3*a(k+1)-a(k))); mapput(~M, n, r); r;} \\ Ruud H.G. van Tol, Nov 19 2024

Formula

a(2*n) = a(n),
a(6*n+1) = a(n+1) - a(n),
a(6*n+3) = a(n+2) - 2*a(n+1) + a(n),
a(6*n+5) = a(n+3) - 3*a(n+2) + 3*a(n+1) - a(n).

A260643 Start a spiral of numbers on a square grid, with the initial square as a(1) = 1. a(n) is the smallest positive integer not equal to or previously adjacent (horizontally/vertically) to its neighbors. See the Comments section for a more exact definition.

Original entry on oeis.org

1, 2, 3, 4, 2, 5, 3, 6, 7, 1, 8, 7, 4, 8, 5, 6, 4, 9, 7, 10, 1, 9, 8, 11, 3, 12, 11, 10, 12, 13, 1, 12, 14, 9, 10, 14, 1, 15, 6, 13, 2, 16, 3, 17, 11, 13, 5, 14, 2, 11, 6, 14, 13, 9, 15, 18, 2, 19, 5, 15, 16, 4, 17, 20, 2, 21, 3, 18, 16, 17, 5, 20, 4, 19, 6
Offset: 1

Views

Author

Peter Kagey, Nov 11 2015

Keywords

Comments

A more detailed definition from Antti Karttunen, Dec 09 2015: (Start)
After a(1) = 1, for the next term always choose the smallest number k >= 1 such that neither k and a(n-1) nor k and a(A265400(n)) [in case A265400(n) > 0] are equal, and neither of these pairs occur anywhere adjacent to each other (horizontally or vertically) in so far constructed spiral. Here A265400(n) gives the index of the nearest horizontally or vertically adjacent inner neighbor of the n-th term in spiral, or 0 if n is one of the corner cases A033638.
The condition "... do not occur anywhere adjacent to each other (horizontally or vertically) in so far constructed spiral" can be more formally stated as: there is no such 1 < j < n, for which either the unordered pair {a(j),a(j-1)} or [in case A265400(j) > 0] also the unordered pair {a(j),a(A265400(j))} would be equal to either of the unordered pair {k,a(n-1)} or the unordered pair {k,a(A265400(n))} [in case A265400(n) > 0], where k is the term chosen for a(n). (See also my reference Scheme-implementation.)
(End)

Examples

			a(8) = 6 because pairs {1,2}, {1,4} and {1,5} already occur, the immediately adjacent terms are 1 and 3, thus neither number can be used, so the smallest usable number is 6.
a(12) = 7 because 1 and 2 are already adjacent to 8; 2, 4, 5, and 6 are already adjacent to 3.
The following illustration is the timeline of spiral's construction step-by-step:
        |      |   3  |  43  | 243  | 243  |     |  243  |  243  |  2437
    1   |  12  |  12  |  12  |  12  | 512  |     |  512  |  5128 |  5128
        |      |      |      |      |      | ... |  3671 |  3671 |  3671
        |      |      |      |      |      |     |       |       |
  a(1)=1|a(2)=2|a(3)=3|a(4)=4|a(5)=2|a(6)=5|     |a(10)=1|a(11)=8|a(12)=7
Indices of this spiral are shown below using the base-36 system, employing as its placeholder values the digits 0-9 and letter A-Z. The 1 at the center is where the spiral starts:
            ZYXWV
           HGFEDU
           I543CT
           J612BS
           K789AR
           LMNOPQ
		

Crossrefs

Cf. A272573 (analogous sequence on a hexagonal tiling).
Cf. A265414 (positions of records, where n occurs for the first time), A265415 (positions of ones).

A325794 Number of divisors of n minus the sum of prime indices of n.

Original entry on oeis.org

1, 1, 0, 1, -1, 1, -2, 1, -1, 0, -3, 2, -4, -1, -1, 1, -5, 1, -6, 1, -2, -2, -7, 3, -3, -3, -2, 0, -8, 2, -9, 1, -3, -4, -3, 3, -10, -5, -4, 2, -11, 1, -12, -1, -1, -6, -13, 4, -5, -1, -5, -2, -14, 1, -4, 1, -6, -7, -15, 5, -16, -8, -2, 1, -5, 0, -17, -3, -7
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).

Crossrefs

Positions of positive terms are A325795.
Positions of nonnegative terms are A325796.
Positions of negative terms are A325797.
Positions of nonpositive terms are A325798.
Positions of 1's are A325792.
Positions of 0's are A325793.
Positions of -1's are A325694.

Programs

  • Mathematica
    Table[DivisorSigma[0,n]-Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]],{n,100}]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    A325794(n) = (numdiv(n)-A056239(n)); \\ Antti Karttunen, May 26 2019

Formula

a(n) = A000005(n) - A056239(n).

A140263 Permutation of nonnegative integers obtained by interleaving A117967 and A117968.

Original entry on oeis.org

0, 1, 2, 5, 7, 3, 6, 4, 8, 17, 22, 15, 21, 16, 23, 11, 19, 9, 18, 10, 20, 14, 25, 12, 24, 13, 26, 53, 67, 51, 66, 52, 68, 47, 64, 45, 63, 46, 65, 50, 70, 48, 69, 49, 71, 35, 58, 33, 57, 34, 59, 29, 55, 27, 54, 28, 56, 32, 61, 30, 60, 31, 62, 44, 76, 42, 75, 43, 77, 38, 73, 36
Offset: 0

Views

Author

Antti Karttunen, May 19 2008, originally described in a posting at the SeqFan mailing list on Sep 15 2005

Keywords

Crossrefs

Inverse: A140264. Bisections: A117967 & A117968. a(n) = A140265(n+1)-1.

Programs

  • Python
    from sympy import ceiling
    from sympy.ntheory.factor_ import digits
    def a004488(n): return int("".join([str((3 - i)%3) for i in digits(n, 3)[1:]]), 3)
    def a117968(n):
        if n==1: return 2
        if n%3==0: return 3*a117968(n/3)
        elif n%3==1: return 3*a117968((n - 1)/3) + 2
        else: return 3*a117968((n + 1)/3) + 1
    def a117967(n): return 0 if n==0 else a117968(-n) if n<0 else a004488(a117968(n))
    def a001057(n): return -(-1)**n*ceiling(n/2)
    def a(n): return a117967(a001057(n)) # Indranil Ghosh, Jun 07 2017

Formula

a(n) = A117967(A001057(n)). (Assuming that the domain of A117967 is the whole Z line.)

A240830 a(n)=1 for n <= s+k; thereafter a(n) = Sum(a(n-i-s-a(n-i-1)),i=0..k-1) where s=0, k=7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 13, 13, 13, 13, 13, 13, 19, 13, 19, 19, 19, 19, 25, 19, 25, 19, 25, 25, 31, 25, 31, 25, 31, 25, 31, 31, 37, 31, 37, 31, 37, 37, 37, 37, 43, 37, 43, 43, 43, 43, 43, 43, 49, 49, 49, 49, 49, 49, 49, 55, 55, 55, 55, 55, 55, 61, 55, 61, 61, 61, 61, 67, 61, 67, 61, 67, 67, 73
Offset: 1

Views

Author

N. J. A. Sloane, Apr 16 2014

Keywords

Crossrefs

Same recurrence as A240828, A120503 and A046702.
See also A240831, A240832.
Callaghan et al. (2005)'s sequences T_{0,k}(n) for k=1 through 7 are A000012, A046699, A046702, A240835, A241154, A241155, A240830.

Programs

  • Maple
    #T_s,k(n) from Callaghan et al. Eq. (1.7).
    s:=0; k:=7;
    a:=proc(n) option remember; global s,k;
    if n <= s+k then 1
    else
        add(a(n-i-s-a(n-i-1)),i=0..k-1);
    fi; end;
    t1:=[seq(a(n),n=1..100)];
  • Mathematica
    A240830[n_]:=A240830[n]=If[n<=7,1,Sum[A240830[n-i-A240830[n-i-1]],{i,0,6}]];
    Array[A240830,100] (* Paolo Xausa, Dec 06 2023 *)

A051933 Triangle T(n,m) = Nim-sum (or XOR) of n and m, read by rows, 0<=m<=n.

Original entry on oeis.org

0, 1, 0, 2, 3, 0, 3, 2, 1, 0, 4, 5, 6, 7, 0, 5, 4, 7, 6, 1, 0, 6, 7, 4, 5, 2, 3, 0, 7, 6, 5, 4, 3, 2, 1, 0, 8, 9, 10, 11, 12, 13, 14, 15, 0, 9, 8, 11, 10, 13, 12, 15, 14, 1, 0, 10, 11, 8, 9, 14, 15, 12, 13, 2, 3, 0, 11, 10, 9, 8, 15, 14, 13, 12, 3, 2, 1, 0, 12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 0
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 1999

Keywords

Examples

			{0},
{1,0},
{2,3,0},
{3,2,1,0}, ...
		

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 60.
  • J. H. Conway, On Numbers and Games, Academic Press, p. 52.

Crossrefs

Cf. A224915 (row sums), A003987 (array), A051910 (Nim-product).
Other triangles: A080099 (AND), A080098 (OR), A265705 (IMPL), A102037 (CNIMPL), A002262 (k).

Programs

  • Haskell
    import Data.Bits (xor)
    a051933 n k = n `xor` k :: Int
    a051933_row n = map (a051933 n) [0..n]
    a051933_tabl = map a051933_row [0..]
    -- Reinhard Zumkeller, Aug 02 2014, Aug 13 2013
    
  • Julia
    using IntegerSequences
    A051933Row(n) = [Bits("XOR", n, k) for k in 0:n]
    for n in 0:10 println(A051933Row(n)) end  # Peter Luschny, Sep 25 2021
  • Maple
    nimsum := proc(a,b) local t1,t2,t3,t4,l; t1 := convert(a+2^20,base,2); t2 := convert(b+2^20,base,2); t3 := evalm(t1+t2); map(x->x mod 2, t3); t4 := convert(evalm(%),list); l := convert(t4,base,2,10); sum(l[k]*10^(k-1), k=1..nops(l)); end; # memo: adjust 2^20 to be much bigger than a and b
    AT := array(0..N,0..N); for a from 0 to N do for b from a to N do AT[a,b] := nimsum(a,b); AT[b,a] := AT[a,b]; od: od:
    # Alternative:
    A051933 := (n, k) -> Bits:-Xor(n, k):
    seq(seq(A051933(n, k), k=0..n), n=0..12); # Peter Luschny, Sep 23 2019
  • Mathematica
    Flatten[Table[BitXor[m, n], {m, 0, 12}, {n, 0, m}]] (* Jean-François Alcover, Apr 29 2011 *)

Extensions

More terms from Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999

A105870 Fibonacci sequence (mod 7).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3
Offset: 0

Views

Author

Shyam Sunder Gupta, May 05 2005

Keywords

Comments

Sequence is periodic with Pisano period 16 = A001175(7).

Examples

			a(5) = 5 because Fibonacci(5) = 5.
a(6) = 1 because Fibonacci(6) = 8 and 8 mod 7 = 1.
a(7) = 6 because Fibonacci(7) = 13 and 13 mod 7 = 6.
		

Programs

Formula

G.f.: - x*(1 + x + 2*x^2 + 3*x^3 + 5*x^4 + x^5 + 6*x^6 + 6*x^8 + 6*x^9 + 5*x^10 + 4*x^11 + 2*x^12 + 6*x^13 + x^14)/((x - 1)*(1 + x)*(1 + x^2)*(1 + x^4)*(1 + x^8)). - R. J. Mathar, Jul 14 2012
a(1) = a(2) = 1, then a(n) = (a(n - 2) + a(n - 1)) mod 7. - Alonso del Arte, Jul 30 2013

Extensions

a(0)=0 from Vincenzo Librandi, Feb 04 2014

A142151 a(n) = OR{k XOR (n-k): 0<=k<=n}.

Original entry on oeis.org

0, 1, 2, 3, 6, 5, 6, 7, 14, 13, 14, 11, 14, 13, 14, 15, 30, 29, 30, 27, 30, 29, 30, 23, 30, 29, 30, 27, 30, 29, 30, 31, 62, 61, 62, 59, 62, 61, 62, 55, 62, 61, 62, 59, 62, 61, 62, 47, 62, 61, 62, 59, 62, 61, 62, 55, 62, 61, 62, 59, 62, 61, 62, 63, 126, 125, 126, 123, 126, 125
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 15 2008

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Bits (xor, (.|.))
    a142151 :: Integer -> Integer
    a142151 = foldl (.|.) 0 . zipWith xor [0..] . reverse . enumFromTo 1
    -- Reinhard Zumkeller, Mar 31 2015
    
  • Julia
    using IntegerSequences
    A142151List(len) = [Bits("CIMP", n, n+1) for n in 0:len]
    println(A142151List(69))  # Peter Luschny, Sep 25 2021
    
  • Maple
    A142151 := n -> n + Bits:-Nor(n, n+1):
    seq(A142151(n), n=0..69); # Peter Luschny, Sep 26 2019
  • Python
    from functools import reduce
    from operator import or_
    def A142151(n): return 0 if n == 0 else reduce(or_,(k^n-k for k in range(n+1))) if n % 2 else (1 << n.bit_length()-1)-1 <<1 # Chai Wah Wu, Jun 30 2022

Formula

a(2*n) = 2*(A062383(n)-1);
A023416(a(n)) <= 1.

A210838 Coordinates (x,y) of the endpoint of a structure (or curve) formed by Q-toothpicks of size = 1..n. The inflection points are the n-th nodes if n is a triangular number A000217.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 0, 6, -4, 10, 1, 15, 7, 9, 14, 2, 22, 10, 13, 19, 3, 9, -8, -2, -20, 10, -7, 23, 7, 9, -8, -6, -24, -22, -7, -39, 11, -21, -8, -2, -28, -22, -7, -43, 15, -65, -8, -88, -32, -64, -7, -39, 19, -65, -8, -92, -36, -64, -65, -35, -95, -65, -64, -96
Offset: 0

Views

Author

Omar E. Pol, Mar 28 2012

Keywords

Comments

It appears there is an infinite family of this type of curves or structures in which the terms of a sequence of positive integers are represented as inflection points and the gaps between them are essentially represented as nodes of spirals. For example: consider a structure formed by Q-toothpicks of size = Axxxxxa connected by their endpoints in which the inflection points are the exposed endpoints at stage Axxxxxb(n), where both Axxxxxa and Axxxxxb are sequences with positive integers. Also instead of Q-toothpicks we can use semicircumferences or also 3/4 of circumferences. For the definition of Q-toothpicks see A187210.
We start at stage 0 with no Q-toothpicks.
At stage 1 we place a Q-toothpick of size 1 centered at (1,0) with its endpoints at (0,0) and (1,1). Since 1 is a positive triangular number we have that the end of the curve is also an inflection point.
At stage 2 we place a Q-toothpick of size 2 centered at (1,3) with its endpoints at (1,1) and (3,3).
At stage 3 we place a Q-toothpick of size 3 centered at (0,3) with its endpoints at (3,3) and (0,6). Since 3 is a positive triangular number we have that the end of the curve is also an inflection point.
At stage 4 we place a Q-toothpick of size 4 centered at (0,10) with its endpoints at (0,6) and (-4,10).
And so on...

Examples

			-------------------------------------
Stage n also              The end as
the size of     Pair      inflection
Q-toothpick   (x    y)      point
-------------------------------------
.    0         0,   0,        -
.    1         1,   1,       Yes
.    2         3,   3,        -
.    3         0,   6,       Yes
.    4        -4,  10,        -
.    5         1,  15,        -
.    6         7,   9,       Yes
.    7        14,   2,        -
.    8        22,  10,        -
.    9        13,  19,        -
.   10         3,   9,       Yes
.   11        -8,  -2,        -
.   12       -20,  10,        -
.   13        -7,  23,        -
.   14         7,   9,        -
.   15        -8,  -6,       Yes
		

Crossrefs

Cf. A210841 (the same idea for primes).

Programs

  • Mathematica
    A210838[nmax_]:=Module[{ep={0, 0}, angle=3/4Pi, turn=Pi/2, infl=0}, Join[{ep}, Table[If[n>1&&IntegerQ[Sqrt[8(n-1)+1]], infl++, If[Mod[infl, 2]==1, turn*=-1]; angle-=turn; infl=0]; ep=AngleVector[ep, {Sqrt[2]n, angle}], {n, nmax}]]];
    A210838[100] (* Generates 101 coordinate pairs *) (* Paolo Xausa, Jan 12 2023 *)
  • PARI
    A210838(nmax) = my(ep=vector(nmax+1), turn=1, infl=0, ep1, ep2); ep[1]=[0, 0]; if(nmax==0, return(ep)); ep[2]=[1, 1]; for(n=2, nmax, ep1=ep[n-1]; ep2=ep[n]; if(issquare((n-1)<<3+1), infl++; ep[n+1]=[ep2[1]+n*sign(ep2[1]-ep1[1]), ep2[2]+n*sign(ep2[2]-ep1[2])], if(infl%2, turn*=-1); infl=0; ep[n+1]=[ep2[1]-turn*n*sign(ep1[2]-ep2[2]), ep2[2]+turn*n*sign(ep1[1]-ep2[1])])); ep;
    A210838(100) \\ Generates 101 coordinate pairs - Paolo Xausa, Jan 12 2023
    
  • Python
    from numpy import sign
    from sympy import integer_nthroot
    def A210838(nmax):
        ep, turn, infl = [(0, 0), (1, 1)], 1, 0
        for n in range(2, nmax + 1):
            ep1, ep2 = ep[-2], ep[-1]
            if integer_nthroot(((n - 1) << 3) + 1, 2)[1]: # Continue straight
                infl += 1
                dx = n * sign(ep2[0] - ep1[0])
                dy = n * sign(ep2[1] - ep1[1])
            else: # Turn
                if infl % 2: turn *= -1
                infl = 0
                dx = turn * n * sign(ep2[1] - ep1[1])
                dy = turn * n * sign(ep1[0] - ep2[0])
            ep.append((ep2[0] + dx, ep2[1] + dy))
        return ep[:nmax+1]
    print(A210838(100)) # Generates 101 coordinate pairs - Paolo Xausa, Jan 12 2023

Extensions

a(30)-a(33) corrected and more terms by Paolo Xausa, Jan 12 2023

A239690 Base 4 sum of digits of prime(n).

Original entry on oeis.org

2, 3, 2, 4, 5, 4, 2, 4, 5, 5, 7, 4, 5, 7, 8, 5, 8, 7, 4, 5, 4, 7, 5, 5, 4, 5, 7, 8, 7, 5, 10, 5, 5, 7, 5, 7, 7, 7, 8, 8, 8, 7, 11, 4, 5, 7, 7, 10, 8, 7, 8, 11, 7, 11, 2, 5, 5, 7, 4, 5, 7, 5, 7, 8, 7, 8, 7, 4, 8, 7, 5, 8, 10, 7, 10, 11, 5, 7, 5, 7, 8, 7, 11, 7
Offset: 1

Views

Author

Tom Edgar, Mar 24 2014

Keywords

Comments

a(n) is the rank of prime(n) in the base-4 dominance order on the natural numbers.

Examples

			The sixth prime is 13, 13 in base 4 is (3,1) so a(6)=3+1=4.
		

Crossrefs

Programs

  • Haskell
    a239690 = a053737 . a000040  -- Reinhard Zumkeller, Mar 20 2015
  • Magma
    [&+Intseq(NthPrime(n),4): n in [1..100]]; // Vincenzo Librandi, Mar 25 2014
    
  • Mathematica
    Table[Plus @@ IntegerDigits[Prime[n], 4], {n, 1, 100}] (* Vincenzo Librandi, Mar 25 2014 *)
  • Sage
    [sum(i.digits(base=4)) for i in primes_first_n(200)]
    

Formula

a(n) = A053737(A000040(n)).
Previous Showing 61-70 of 172 results. Next