cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: \n"} # _Ivan Neretin

\n"} # _Ivan Neretin's wiki page.

\n"} # _Ivan Neretin has authored 75 sequences. Here are the ten most recent ones:

A283325 Lengths of runs of successive zeros in A283683.

Original entry on oeis.org

1, 2, 3, 1, 2, 2, 2, 3, 2, 4, 2, 1, 3, 2, 2, 3, 2, 1, 1, 3, 2, 2, 1, 3, 2, 3, 1, 3, 2, 1, 2, 1, 3, 2, 2, 2, 1, 3, 2, 3, 2, 1, 3, 2, 1, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 1, 3, 2, 3, 2, 2, 2, 1, 3, 2, 4, 2, 2, 2, 1, 3, 2, 1, 3, 2, 2, 2, 1, 3, 2, 2, 3
Offset: 1

Author

N. J. A. Sloane, Mar 16 2017

Keywords

Crossrefs

Cf. A283683.

Programs

  • Mathematica
    Take[Length /@ Most@Split@ Nest[Flatten@ Table[#[[n - i]], {n, Length[#] + 1}, {i, n - 1}] &, {0, 1}, 4], {1, -1, 2}] (* Ivan Neretin, Mar 17 2017 *)

Extensions

Initial 1 added by Ivan Neretin, Mar 17 2017

A268231 Indices of 1's in A047999.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 14, 15, 16, 19, 20, 21, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 44, 45, 46, 53, 54, 55, 57, 63, 65, 66, 67, 68, 69, 74, 75, 76, 77, 78, 82, 86, 90, 91, 92, 95, 96, 99, 100, 103, 104, 105, 107, 109, 111, 113, 115, 117, 119, 120, 121, 122, 123, 124, 125, 126, 127
Offset: 1

Author

N. J. A. Sloane, Feb 03 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten@Position[Flatten@NestList[Mod[Append[#, 0] + Prepend[#, 0], 2] &, {1}, 15], 1] - 1 (* Ivan Neretin, Dec 19 2017 *)

A249036 a(1)=1, a(2)=2; thereafter a(n) = a(n-1-(number of even terms so far)) + a(n-1-(number of odd terms so far)).

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 44, 45, 45, 46, 46, 47
Offset: 1

Author

N. J. A. Sloane, Oct 26 2014

Keywords

Comments

Suggested by A006336 and A007604.

Crossrefs

A249037 and A249038 give numbers of even and odd terms so far.

Programs

  • Maple
    M:=100;
    v[1]:=1; v[2]:=2; w[1]:=0; w[2]:=1; x[1]:=1; x[2]:=1;
    for n from 3 to M do
       v[n]:=v[n-1-w[n-1]]+v[n-1-x[n-1]];
    if v[n] mod 2 = 0 then w[n]:=w[n-1]+1; x[n]:=x[n-1];
                      else w[n]:=w[n-1]; x[n]:=x[n-1]+1; fi;
    od:
    [seq(v[n], n=1..M)]; # A249036
    [seq(w[n], n=1..M)]; # A249037
    [seq(x[n], n=1..M)]; # A249038
  • Mathematica
    Nest[Append[#, #[[Length@Select[#, OddQ]]] + #[[Length@Select[#, EvenQ]]]] &, {1, 2}, 75] (* Ivan Neretin, May 02 2016 *)

A231879 Numbers n such that bigomega(n)^2 (cf. A001222) does not divide n.

Original entry on oeis.org

1, 6, 8, 9, 10, 12, 14, 15, 20, 21, 22, 24, 25, 26, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115
Offset: 1

Author

N. J. A. Sloane, Nov 17 2013

Keywords

Comments

Contains all semiprimes (A001358) except 4. - Ivan Neretin, Apr 05 2016

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[2, 115], ! Divisible[#, PrimeOmega[#]^2] &]] (* Ivan Neretin, Apr 05 2016 *)
  • PARI
    lista(nn) = {print1(1, ", "); for(n=2, nn, if(n % bigomega(n)^2 != 0, print1(n, ", ")));} \\ Altug Alkan, Apr 05 2016

A231878 Numbers k such that bigomega(k)^2 (cf. A001222) divides k.

Original entry on oeis.org

2, 3, 4, 5, 7, 11, 13, 16, 17, 18, 19, 23, 27, 29, 31, 37, 41, 43, 45, 47, 53, 59, 61, 63, 67, 71, 73, 79, 83, 89, 97, 99, 101, 103, 107, 109, 113, 117, 127, 131, 137, 139, 144, 149, 151, 153, 157, 163, 167, 171, 173, 179, 181, 191, 193, 197, 199, 200, 207, 211, 216, 223, 227, 229, 233, 239, 241, 251, 256, 257, 261, 263
Offset: 1

Author

N. J. A. Sloane, Nov 17 2013

Keywords

Comments

Contains all primes. - Ivan Neretin, Apr 05 2016

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 265], Divisible[#, PrimeOmega[#]^2] &] (* Ivan Neretin, Apr 05 2016 *)
  • PARI
    isok(n) = !(n % bigomega(n)^2); \\ Michel Marcus, Apr 05 2016

A231500 a(n) = Sum_{i=0..n} wt(i)^2, where wt(i) = A000120(i).

Original entry on oeis.org

0, 1, 2, 6, 7, 11, 15, 24, 25, 29, 33, 42, 46, 55, 64, 80, 81, 85, 89, 98, 102, 111, 120, 136, 140, 149, 158, 174, 183, 199, 215, 240, 241, 245, 249, 258, 262, 271, 280, 296, 300, 309, 318, 334, 343, 359, 375, 400, 404, 413, 422, 438, 447, 463, 479, 504, 513, 529, 545, 570, 586, 611, 636, 672, 673, 677, 681, 690, 694
Offset: 0

Author

N. J. A. Sloane, Nov 12 2013

Keywords

Comments

Stolarsky (1977) has an extensive bibliography.

Crossrefs

Programs

  • Maple
    digsum:=proc(n,B) local a; a := convert(n, base, B):
    add(a[i], i=1..nops(a)): end;
    f:=proc(n,k,B) global digsum; local i;
    add( digsum(i,B)^k,i=0..n); end;
    [seq(f(n,1,2),n=0..100)]; #A000788
    [seq(f(n,2,2),n=0..100)]; #A231500
    [seq(f(n,3,2),n=0..100)]; #A231501
    [seq(f(n,4,2),n=0..100)]; #A231502
  • Mathematica
    FoldList[#1 + DigitCount[#2, 2, 1]^2 &, 0, Range[1, 68]] (* Ivan Neretin, May 21 2015 *)
  • PARI
    a(n) = sum(i=0, n, hammingweight(i)^2); \\ Michel Marcus, Sep 20 2017

Formula

Stolarsky (1977) studies the asymptotics.
a(n) ~ n * (log(n)/(2*log(2)))^2 + O(n*log(n)) (Stolarsky, 1977). - Amiram Eldar, Jan 20 2022
a(n) = Sum_{k=0..floor(log_2(n+1))} k^2 * A360189(n,k). - Alois P. Heinz, Mar 06 2023

A222313 A222311 sorted and duplicates removed (conjectured).

Original entry on oeis.org

1, 2, 3, 5, 6, 15, 17, 33, 41, 55, 57, 65, 70, 105, 129, 257, 273, 385, 561, 897, 969, 1001, 1105, 1353, 1430, 1785, 2049, 2145, 2337, 2665, 3553, 4097, 4305, 4745, 4845, 5633, 6105, 6545, 8193, 8385
Offset: 1

Author

N. J. A. Sloane, Feb 16 2013

Keywords

Comments

Obtained by sorting and removing duplicates from the first 500 terms of A222311. There is no proof as yet that this list is complete up to 105. Only the first three terms shown are certain. Is there a proof that 4 cannot appear?

Crossrefs

Programs

  • Mathematica
    terms = 40; nmax0 = 5000;
    seq[nmax_] := seq[nmax] = Union[Print[nmax]; Join[r = {1}, Table[Reverse[r = FoldList[#1*(#2/GCD[#1, #2]^2) & , n, r]], {n, 2, nmax}][[All, 1]]]][[1 ;; terms]];
    seq[nmax = nmax0]; seq[nmax = 2 nmax]; While[seq[nmax] == seq[nmax/2], nmax = 2 nmax]; seq[nmax] (* Jean-François Alcover, Sep 04 2018, after Ivan Neretin in A222310 *)

Extensions

Corrected and extended using data from Cobeli et al., 2015. - N. J. A. Sloane, Aug 27 2016
More terms (computed from a list of 10000) from Jean-François Alcover, Sep 04 2018

A222311 Leading diagonal of triangle in A222310.

Original entry on oeis.org

1, 2, 3, 6, 5, 15, 105, 70, 1, 5, 33, 55, 65, 273, 1001, 1430, 17, 17, 969, 4845, 1785, 6545, 37145, 81719, 17, 1105, 3553, 969969, 672945, 81345, 955049953, 66786710, 33, 561, 385, 6545, 6105, 657305, 15873, 8544965, 1353, 268345, 61705, 329681, 650793, 24173705985, 3065857, 250538768183, 561, 33, 21945
Offset: 1

Author

N. J. A. Sloane, Feb 16 2013

Keywords

Comments

See A222313 for the numbers that appear in this sequence.

Crossrefs

Programs

A222310 Array read by antidiagonals: first row is 1, 2, 3, 4, ...; for subsequent rows, write i*j/gcd(i,j)^2 under ...i.j... in previous row.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 6, 2, 12, 4, 5, 30, 15, 20, 5, 15, 3, 10, 6, 30, 6, 105, 7, 21, 210, 35, 42, 7, 70, 6, 42, 2, 420, 12, 56, 8, 1, 70, 105, 10, 5, 84, 63, 72, 9, 5, 5, 14, 30, 3, 15, 1260, 20, 90, 10, 33, 165, 33, 462, 385, 1155, 77, 1980, 99, 110, 11, 55, 15, 11, 3, 154, 10, 462, 6, 330, 30, 132, 12, 65, 143, 2145, 195, 65, 10010, 1001, 78
Offset: 1

Author

N. J. A. Sloane, Feb 16 2013

Keywords

Examples

			Array begins:
1...2...3.....4......5......6.....7.....8.....9.....10
..2...6....12....20.....30....42.....56...72.....90
....3...2....15......6.....35....12....63....20
......6....30....10....210...420.....84..1260
........5.....3.....21......2.....5....15
...........15.....7.....42....10......3
.............105.....6.....105...30
........
		

Crossrefs

Cf. A036262. Leading diagonal is A222311 (cf. A222313).
Similar array with primes in the starting row is A255483.

Programs

  • Maple
    # To get first M rows of the array (s0 is A222311):
    g:=(i,j)->i*j/gcd(i,j)^2;
    M:=50;
    s0:=[1]:
    s1:=[seq(n,n=1..M)]:
    for i1 from 1 to M-1 do
    lprint(s1);
    s2:=[seq(g(s1[i],s1[i+1]),i=1..nops(s1)-1)];
    s0:=[op(s0),s2[1]];
    s1:=[seq(s2[i],i=1..nops(s2))];
    od:
    # To produce A222310 (i.e., to read the array by antidiagonals):
    g:=(i,j)->i*j/gcd(i,j)^2;
    M:=15;
    b1:=Array(1..M);
    s0:=[1]:
    s1:=[seq(n,n=1..M)]:
    b1[1]:=s1;
    for i1 from 1 to M-1 do
    #lprint(s1);
    s2:=[seq(g(s1[i],s1[i+1]),i=1..nops(s1)-1)];
    b1[i1+1]:=s2;
    s0:=[op(s0),s2[1]];
    s1:=[seq(s2[i],i=1..nops(s2))];
    od:
    #[seq(s0[i],i=1..nops(s0))]; (that gives A222311)
    lis:=[]:
    for i from 1 to M do for j from 1 to i do
    lis:=[op(lis),b1[i-j+1][j]];
    od: od:
    [seq(lis[k],k=1..nops(lis))];
  • Mathematica
    a = r = {1}; Do[a = Join[a, Reverse[r = FoldList[#1*#2/GCD[#1, #2]^2 &, n, r]]], {n, 2, 13}]; a (* Ivan Neretin, May 14 2015 *)

A212438 Irregular triangle read by rows: T(n,k) is the number of polyhedra with n faces and k vertices (n >= 4, k=4..2n-4).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 2, 2, 0, 0, 2, 8, 11, 8, 5, 0, 0, 2, 11, 42, 74, 76, 38, 14, 0, 0, 0, 8, 74, 296, 633, 768, 558, 219, 50, 0, 0, 0, 5, 76, 633, 2635, 6134, 8822, 7916, 4442, 1404, 233, 0, 0, 0, 0, 38, 768, 6134, 25626, 64439, 104213, 112082, 79773, 36528, 9714, 1249
Offset: 4

Author

N. J. A. Sloane, May 16 2012

Keywords

Comments

Because of duality, T(n,k) = T(k,n). - Ivan Neretin, May 25 2016
The number of edges is n+k-2. - Andrew Howroyd, Mar 27 2021

Examples

			Triangle begins:
1
0 1 1
0 1 2  2  2
0 0 2  8 11   8    5
0 0 2 11 42  74   76   38   14
0 0 0  8 74 296  633  768  558  219   50
0 0 0  5 76 633 2635 6134 8822 7916 4442 1404 233
...
		

Crossrefs

A049337, A058787, A212438 are all versions of the same triangle.
Row sums (the same as column sums) are A000944.
Main diagonal is A002856.
Cf. A002840 (by edges), A239893.

Extensions

Terms a(53) and beyond from Andrew Howroyd, Mar 27 2021