A000028 Let k = p_1^e_1 p_2^e_2 p_3^e_3 ... be the prime factorization of n. Sequence gives k such that the sum of the numbers of 1's in the binary expansions of e_1, e_2, e_3, ... is odd.
2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 24, 25, 29, 30, 31, 37, 40, 41, 42, 43, 47, 49, 53, 54, 56, 59, 60, 61, 66, 67, 70, 71, 72, 73, 78, 79, 81, 83, 84, 88, 89, 90, 96, 97, 101, 102, 103, 104, 105, 107, 108, 109, 110, 113, 114, 121, 126, 127, 128, 130, 131, 132, 135, 136, 137
Offset: 1
Examples
If k = 96 then the maximal exponent of 2 that divides 96 is 5, for 3 it is 1. 5 in binary is 101_2 and has so has a sum of binary digits of 1 + 0 + 1 = 2. 1 in binary is 1_2 and so has a sum of binary digits of 1. Thus the sum of digits of binary exponents is 2 + 1 = 3 which is odd and so 96 is a term. - _Vladimir Shevelev_, Oct 28 2013, edited by _David A. Corneth_, Mar 20 2019
References
- Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000
- J. Lambek and L. Moser, On some two way classifications of integers, Canad. Math. Bull. 2 (1959), 85-89.
- Index entries for sequences computed from exponents in factorization of n.
Crossrefs
Programs
-
Haskell
a000028 n = a000028_list !! (n-1) a000028_list = filter (odd . sum . map a000120 . a124010_row) [1..] -- Reinhard Zumkeller, Oct 05 2011
-
Maple
(Maple program from N. J. A. Sloane, Dec 20 2007) expts:=proc(n) local t1,t2,t3,t4,i; if n=1 then RETURN([0]); fi; if isprime(n) then RETURN([1]); fi; t1:=ifactor(n); if nops(factorset(n))=1 then RETURN([op(2,t1)]); fi; t2:=nops(t1); t3:=[]; for i from 1 to t2 do t4:=op(i,t1); if nops(t4) = 1 then t3:=[op(t3),1]; else t3:=[op(t3),op(2,t4)]; fi; od; RETURN(t3); end; # returns a list of the exponents e_1, e_2, ... A000120 := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end: # returns weight of binary expansion LamMos:= proc(n) local t1,t2,t3,i; t1:=expts(n); add( A000120(t1[i]),i=1..nops(t1)); end; # returns sum of weights of exponents M:=400; t0:=[]; t1:=[]; for n from 1 to M do if LamMos(n) mod 2 = 0 then t0:=[op(t0),n] else t1:=[op(t1),n]; fi; od: t0; t1; # t0 is A000379, t1 is the present sequence
-
Mathematica
iMoebiusMu[ n_ ] := Switch[ MoebiusMu[ n ], 1, 1, -1, -1, 0, If[ OddQ[ Plus@@ (DigitCount[ Last[ Transpose[ FactorInteger[ n ] ] ], 2, 1 ]) ], -1, 1 ] ]; q=Select[ Range[ 20000 ],iMoebiusMu[ # ]===-1& ] (* Wouter Meeussen, Dec 21 2007 *) Rest[Select[Range[150],OddQ[Count[Flatten[IntegerDigits[#,2]&/@ Transpose[ FactorInteger[#]][[2]]],1]]&]] (* Harvey P. Dale, Feb 25 2012 *)
-
PARI
is(n)=my(f=factor(n)[,2]); sum(i=1,#f,hammingweight(f[i]))%2 \\ Charles R Greathouse IV, Aug 31 2013
Extensions
Entry revised by N. J. A. Sloane, Dec 20 2007, restoring the original definition, correcting the entries and adding a new b-file.
Comments