A000037 Numbers that are not squares (or, the nonsquares).
2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
Offset: 1
Examples
For example note that the squares 0, 1, 4, 9, 16 are not included.
References
- Titu Andreescu, Dorin Andrica, and Zuming Feng, 104 Number Theory Problems, Birkhäuser, 2006, 58-60.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 9900 terms from N. J. A. Sloane)
- E. R. Berlekamp, A contribution to mathematical psychometrics, Unpublished Bell Labs Memorandum, Feb 08 1968 [Annotated scanned copy]
- A. J. dos Reis and D. M. Silberger, Generating nonpowers by formula, Math. Mag., 63 (1990), 53-55.
- Bakir Farhi, An explicit formula generating the non-Fibonacci numbers, arXiv:1105.1127 [math.NT], May 05 2011.
- S. R. Finch, Class number theory
- Steven R. Finch, Class number theory [Cached copy, with permission of the author]
- Henry W. Gould, Letters to N. J. A. Sloane, Oct 1973 and Jan 1974.
- S. Kaji, T. Maeno, K. Nuida, and Y. Numata, Polynomial Expressions of Carries in p-ary Arithmetics, arXiv preprint arXiv:1506.02742 [math.CO], 2015-2016.
- J. Lambek and L. Moser, Inverse and complementary sequences of natural numbers, Amer. Math. Monthly, 61 (1954), 454-458. doi 10.2307/2308078, see example 4 (includes the formula). [Nicolas Normand (Nicolas.Normand(AT)polytech.univ-nantes.fr), Nov 24 2009]
- R. P. Loh, A. G. Shannon, and A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
- Cristinel Mortici, Remarks on Complementary Sequences, Fibonacci Quart. 48 (2010), no. 4, 343-347.
- R. D. Nelson, Sequences which omit powers, The Mathematical Gazette, Number 461, 1988, pages 208-211.
- M. A. Nyblom, Some curious sequences involving floor and ceiling functions, Am. Math. Monthly 109 (#6, 2002), 559-564.
- Rosetta Code, Sequence of non-squares
- J. Scholes, 27th Putnam 1966 Prob. A4
- Aaron Snook, Augmented Integer Linear Recurrences, 2012. - From _N. J. A. Sloane_, Dec 19 2012
- Eric Weisstein's World of Mathematics, Square Number
- Eric Weisstein's World of Mathematics, Continued Fraction
Crossrefs
Programs
-
Haskell
a000037 n = n + a000196 (n + a000196 n) -- Reinhard Zumkeller, Nov 23 2011
-
Magma
[n : n in [1..1000] | not IsSquare(n) ];
-
Magma
at:=0; for n in [1..10000] do if not IsSquare(n) then at:=at+1; print at, n; end if; end for;
-
Maple
A000037 := n->n+floor(1/2+sqrt(n));
-
Mathematica
a[n_] := (n + Floor[Sqrt[n + Floor[Sqrt[n]]]]); Table[a[n], {n, 71}] (* Robert G. Wilson v, Sep 24 2004 *) With[{upto=100},Complement[Range[upto],Range[Floor[Sqrt[upto]]]^2]] (* Harvey P. Dale, Dec 02 2011 *) a[ n_] := If[ n < 0, 0, n + Round @ Sqrt @ n]; (* Michael Somos, May 28 2014 *)
-
Maxima
A000037(n):=n + floor(1/2 + sqrt(n))$ makelist(A000037(n),n,1,50); /* Martin Ettl, Nov 15 2012 */
-
PARI
{a(n) = if( n<0, 0, n + (1 + sqrtint(4*n)) \ 2)};
-
Python
from math import isqrt def A000037(n): return n+isqrt(n+isqrt(n)) # Chai Wah Wu, Mar 31 2022
-
Python
from math import isqrt def A000037(n): return n+(k:=isqrt(n))+int(n>=k*(k+1)+1) # Chai Wah Wu, Jun 17 2024
Formula
a(n) = n + floor(1/2 + sqrt(n)).
a(n) = n + floor(sqrt( n + floor(sqrt n))).
A010052(a(n)) = 0. - Reinhard Zumkeller, Jan 26 2010
a(n) = A000194(n) + n. - Jaroslav Krizek, Jun 14 2009
Extensions
Edited by Charles R Greathouse IV, Oct 30 2009
Comments