cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000037 Numbers that are not squares (or, the nonsquares).

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
Offset: 1

Views

Author

Keywords

Comments

Note the remarkable formula for the n-th term (see the FORMULA section)!
These are the natural numbers with an even number of divisors. The number of divisors is odd for the complementary sequence, the squares (sequence A000290) and the numbers for which the number of divisors is divisible by 3 is sequence A059269. - Ola Veshta (olaveshta(AT)my-deja.com), Apr 04 2001
a(n) is the largest integer m not equal to n such that n = (floor(n^2/m) + m)/2. - Alexander R. Povolotsky, Feb 10 2008
Union of A007969 and A007970; A007968(a(n)) > 0. - Reinhard Zumkeller, Jun 18 2011
Terms of even numbered rows in the triangle A199332. - Reinhard Zumkeller, Nov 23 2011
If a(n) and a(n+1) are of the same parity then (a(n)+a(n+1))/2 is a square. - Zak Seidov, Aug 13 2012
Theaetetus of Athens proved the irrationality of the square roots of these numbers in the 4th century BC. - Charles R Greathouse IV, Apr 18 2013
4*a(n) are the even members of A079896, the discriminants of indefinite binary quadratic forms. - Wolfdieter Lang, Jun 14 2013

Examples

			For example note that the squares 0, 1, 4, 9, 16 are not included.
		

References

  • Titu Andreescu, Dorin Andrica, and Zuming Feng, 104 Number Theory Problems, Birkhäuser, 2006, 58-60.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A242401 (subsequence).
Cf. A086849 (partial sums), A048395.

Programs

  • Haskell
    a000037 n = n + a000196 (n + a000196 n)
    -- Reinhard Zumkeller, Nov 23 2011
    
  • Magma
    [n : n in [1..1000] | not IsSquare(n) ];
    
  • Magma
    at:=0; for n in [1..10000] do if not IsSquare(n) then at:=at+1; print at, n; end if; end for;
    
  • Maple
    A000037 := n->n+floor(1/2+sqrt(n));
  • Mathematica
    a[n_] := (n + Floor[Sqrt[n + Floor[Sqrt[n]]]]); Table[a[n], {n, 71}] (* Robert G. Wilson v, Sep 24 2004 *)
    With[{upto=100},Complement[Range[upto],Range[Floor[Sqrt[upto]]]^2]] (* Harvey P. Dale, Dec 02 2011 *)
    a[ n_] :=  If[ n < 0, 0, n + Round @ Sqrt @ n]; (* Michael Somos, May 28 2014 *)
  • Maxima
    A000037(n):=n + floor(1/2 + sqrt(n))$ makelist(A000037(n),n,1,50); /* Martin Ettl, Nov 15 2012 */
    
  • PARI
    {a(n) = if( n<0, 0, n + (1 + sqrtint(4*n)) \ 2)};
    
  • Python
    from math import isqrt
    def A000037(n): return n+isqrt(n+isqrt(n)) # Chai Wah Wu, Mar 31 2022
    
  • Python
    from math import isqrt
    def A000037(n): return n+(k:=isqrt(n))+int(n>=k*(k+1)+1) # Chai Wah Wu, Jun 17 2024

Formula

a(n) = n + floor(1/2 + sqrt(n)).
a(n) = n + floor(sqrt( n + floor(sqrt n))).
A010052(a(n)) = 0. - Reinhard Zumkeller, Jan 26 2010
A173517(a(n)) = n; a(n)^2 = A030140(n). - Reinhard Zumkeller, Feb 20 2010
a(n) = A000194(n) + n. - Jaroslav Krizek, Jun 14 2009
a(A002061(n)) = a(n^2-n+1) = A002522(n) = n^2 + 1. - Jaroslav Krizek, Jun 21 2009

Extensions

Edited by Charles R Greathouse IV, Oct 30 2009