A000065 -1 + number of partitions of n.
0, 0, 1, 2, 4, 6, 10, 14, 21, 29, 41, 55, 76, 100, 134, 175, 230, 296, 384, 489, 626, 791, 1001, 1254, 1574, 1957, 2435, 3009, 3717, 4564, 5603, 6841, 8348, 10142, 12309, 14882, 17976, 21636, 26014, 31184, 37337, 44582, 53173, 63260, 75174, 89133, 105557, 124753
Offset: 0
Examples
G.f. = x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 10*x^6 + 14*x^7 + 21*x^8 + 29*x^9 + ...
References
- E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944, p. 498; MR0010757.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000 (first 199 terms from N. J. A. Sloane)
- Janka Chlebı́ková, The Structure of Obstructions to Treewidth and Pathwidth. Disc. Appl. Math., Vol. 120, no. 1-3 (2002), 61-71.
- Harmandeep Kaur and Muhammad Asif Rana, Partitions with unique largest part and their generating functions, arXiv:2506.11447 [math.CO], 2025.
- Vladimir Modrak and David Marton, Development of Metrics and a Complexity Scale for the Topology of Assembly Supply Chains, Entropy 2013, 15, 4285-4299
- J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
- J. Riordan, The enumeration of trees by height and diameter, IBM Journal 4 (1960), 473-478. (Annotated scanned copy)
Programs
-
Magma
[NumberOfPartitions(n)-1: n in [0..50]]; // Vincenzo Librandi, Aug 25 2013
-
Maple
with (combstruct):ZL:=proc(m) local i; [T0,{seq(T.i=Prod(Z,Set(T.(i+1))),i=0..m-1), T.m=Z}, unlabeled] end:A:=n -> count(ZL(2),size=n)-count(ZL(1),size=n): seq(A(n),n=1..46); # Zerinvary Lajos, Dec 05 2007 ZL :=[S, {S = Set(Cycle(Z),1 < card)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..45); # Zerinvary Lajos, Mar 25 2008
-
Mathematica
nn=40;CoefficientList[Series[Product[1/(1-x^i),{i,1,nn}]-1/(1-x),{x,0,nn}],x] (* Geoffrey Critzer, Oct 28 2012 *) PartitionsP[Range[0,50]]-1 (* Harvey P. Dale, Aug 24 2013 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( 1 / eta(x + x*O(x^n)), n) - 1)};
-
PARI
{a(n) = if( n<0, 0, numbpart(n) - 1)};
Formula
a(n) = A026820(n,n-1) for n>1. - Reinhard Zumkeller, Jan 21 2010
G.f.: x*G(0)/(x-1) where G(k) = 1 - 1/(1-x^(k+1))/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 23 2013
G.f.: Sum_{k>=2} x^k / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Sep 07 2021
Comments