A000081 Number of unlabeled rooted trees with n nodes (or connected functions with a fixed point).
0, 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847, 1721159, 4688676, 12826228, 35221832, 97055181, 268282855, 743724984, 2067174645, 5759636510, 16083734329, 45007066269, 126186554308, 354426847597, 997171512998
Offset: 0
Examples
G.f. = x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 20*x^6 + 48*x^7 + 115*x^8 + ... From _Joerg Arndt_, Jun 29 2014: (Start) The a(6) = 20 trees with 6 nodes have the following level sequences (with level of root = 0) and parenthesis words: 01: [ 0 1 2 3 4 5 ] (((((()))))) 02: [ 0 1 2 3 4 4 ] ((((()())))) 03: [ 0 1 2 3 4 3 ] ((((())()))) 04: [ 0 1 2 3 4 2 ] ((((()))())) 05: [ 0 1 2 3 4 1 ] ((((())))()) 06: [ 0 1 2 3 3 3 ] (((()()()))) 07: [ 0 1 2 3 3 2 ] (((()())())) 08: [ 0 1 2 3 3 1 ] (((()()))()) 09: [ 0 1 2 3 2 3 ] (((())(()))) 10: [ 0 1 2 3 2 2 ] (((())()())) 11: [ 0 1 2 3 2 1 ] (((())())()) 12: [ 0 1 2 3 1 2 ] (((()))(())) 13: [ 0 1 2 3 1 1 ] (((()))()()) 14: [ 0 1 2 2 2 2 ] ((()()()())) 15: [ 0 1 2 2 2 1 ] ((()()())()) 16: [ 0 1 2 2 1 2 ] ((()())(())) 17: [ 0 1 2 2 1 1 ] ((()())()()) 18: [ 0 1 2 1 2 1 ] ((())(())()) 19: [ 0 1 2 1 1 1 ] ((())()()()) 20: [ 0 1 1 1 1 1 ] (()()()()()) (End)
References
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
- N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, pp. 42, 49.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 305, 998.
- A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
- F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 54 and 244.
- Alexander S. Karpenko, Łukasiewicz Logics and Prime Numbers, Luniver Press, Beckington, 2006, p. 82.
- D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3d Ed. 1997, pp. 386-388.
- D. E. Knuth, The Art of Computer Programming, vol. 1, 3rd ed., Fundamental Algorithms, p. 395, ex. 2.
- D. E. Knuth, TAOCP, Vol. 4, Section 7.2.1.6.
- G. Polya and R. C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds, Springer-Verlag, 1987, p. 63.
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998. [Comment from Neven Juric: Page 64 incorrectly gives a(21)=35224832.]
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..1000 (first 201 terms from N. J. A. Sloane)
- M. J. H. Al-Kaabi, D. Manchon and F. Patras, Monomial bases and pre-Lie structure for free Lie algebras, arXiv:1708.08312 [math.RA], 2017, See p. 5.
- Lluís Alemany-Puig and Ramon Ferrer-i-Cancho, Linear-time calculation of the expected sum of edge lengths in random projective linearizations of trees, arXiv:2107.03277 [cs.CL], 2021.
- Winfried Auzinger, H. Hofstaetter and O. Koch, Symbolic Manipulation of Flows of Nonlinear Evolution Equations, with Application in the Analysis of Split-Step Time Integrators, arXiv preprint arXiv:1605.00453 [math.NA], 2016.
- Roland Bacher, Counting invertible Schrodinger Operators over Finite Fields for Trees Cycles and Complete Graphs, preprint, 2015.
- David Broadhurst, Resurgent Integer Sequences, Rutgers Experimental Math Seminar, Feb 06 2025; Slides.
- A. Cayley, On the analytical forms called trees, Amer. J. Math., 4 (1881), 266-268.
- Bartomeu Fiol, Jairo Martínez-Montoya and Alan Rios Fukelman, The planar limit of N=2 superconformal field theories, arXiv:2003.02879 [hep-th], 2020.
- P. Flajolet, S. Gerhold and B. Salvy, On the non-holonomic character of logarithms, powers and the n-th prime function, arXiv:math/0501379 [math.CO], 2005.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 71.
- Loïc Foissy, Algebraic structures on typed decorated rooted trees, arXiv:1811.07572 [math.RA], 2018.
- A. Genitrini, Full asymptotic expansion for Polya structures, arXiv:1605.00837 [math.CO], May 03 2016, p. 6.
- Ira M. Gessel, Good Will Hunting's Problem: Counting Homeomorphically Irreducible Trees, arXiv:2305.03157 [math.CO], 2023.
- Bernhard Gittenberger, Emma Yu Jin and Michael Wallner, On the shape of random Pólya structures, arXiv|1707.02144 [math.CO], 2017-2018; Discrete Math., 341 (2018), 896-911.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- F. Goebel and R. P. Nederpelt, The number of numerical outcomes of iterated powers, Amer. Math. Monthly, 80 (1971), 1097-1103.
- Mika Göös and Jukka Suomela, Locally checkable proofs in distributed computing Theory Comput. 12, Paper No. 19, 33 p. (2016).
- Vsevolod Gubarev, Rota-Baxter operators on a sum of fields, arXiv:1811.08219 [math.RA], 2018.
- Ivan Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publications de l'Institut Mathématique (Beograd) (N.S.), Vol. 53(67), pp. 17--22 (1993).
- R. K. Guy, Letter to N. J. A. Sloane, 1988-04-12 (annotated scanned copy)
- R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis (annotated cached copy)
- R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis, Amer. Math. Monthly 80 (8) (1973), 868-876.
- F. Harary and G. Prins, The number of homeomorphically irreducible trees, and other species, Acta Math. 101 (1-2) (1959) 141-161, see page 146.
- F. Harary and R. W. Robinson, The number of achiral trees, Jnl. Reine Angewandte Mathematik 278 (1975), 322-335. (Annotated scanned copy)
- R. Harary and R. W. Robinson, Isomorphic factorizations VIII: bisectable trees, Combinatorica 4 (2) (1984) 169-179, eq. (4.3)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 57
- E. Kalinowski and W. Gluza, Evaluation of High Order Terms for the Hubbard Model in the Strong-Coupling Limit, arXiv:1106.4938 [cond-mat.str-el], 2011 (Physical Review B 85, 045105, Jan 2012).
- P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
- Dominique Manchon, On the mathematics of rooted trees, Université Clermont-Auvergne (France, 2019).
- Math Overflow, Discussion
- R. J. Mathar, Topologically Distinct Sets of Non-intersecting Circles in the Plane, arXiv:1603.00077 [math.CO], 2016.
- D. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- R. I. McLachlan, K. Modin, H. Munthe-Kaas and O. Verdier, What are Butcher series, really? The story of rooted trees and numerical methods for evolution equations, arXiv preprint arXiv:1512.00906 [math.NA], 2015.
- Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
- E. M. Palmer and A. J. Schwenk, On the number of trees in a random forest, J. Combin. Theory, B 27 (1979), 109-121.
- N. Pippenger, Enumeration of equicolorable trees, SIAM J. Discrete Math., 14 (2001), 93-115.
- G. Polya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Mathematica, vol. 68, no. 1, pp. 145-254, (1937).
- R. W. Robinson, Letter to N. J. A. Sloane, Jul 29 1980
- Frank Ruskey, Information on Rooted Trees
- A. J. Schwenk, Letter to N. J. A. Sloane, Aug 1972
- N. J. A. Sloane, Illustration of initial terms
- N. J. A. Sloane, Bijection between rooted trees and arrangements of circles
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 1.
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Part 10 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Part 12 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Roger Vogeler, Six Circles, 2015 (illustration for a(7) as the number of arrangements of six circles).
- Eric Weisstein's World of Mathematics, Rooted Tree
- Eric Weisstein's World of Mathematics, Planted Tree
- G. Xiao, Contfrac
- Index entries for "core" sequences
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
- Index entries for sequences related to parenthesizing
- Index entries for continued fractions for constants
Crossrefs
Programs
-
Haskell
import Data.List (genericIndex) a000081 = genericIndex a000081_list a000081_list = 0 : 1 : f 1 [1,0] where f x ys = y : f (x + 1) (y : ys) where y = sum (zipWith (*) (map h [1..x]) ys) `div` x h = sum . map (\d -> d * a000081 d) . a027750_row -- Reinhard Zumkeller, Jun 17 2013
-
Magma
N := 30; P
:= PowerSeriesRing(Rationals(),N+1); f := func< A | x*&*[Exp(Evaluate(A,x^k)/k) : k in [1..N]]>; G := x; for i in [1..N] do G := f(G); end for; G000081 := G; A000081 := [0] cat Eltseq(G); // Geoff Bailey (geoff(AT)maths.usyd.edu.au), Nov 30 2009 -
Maple
N := 30: a := [1,1]; for n from 3 to N do x*mul( (1-x^i)^(-a[i]), i=1..n-1); series(%,x,n+1); b := coeff(%,x,n); a := [op(a),b]; od: a; A000081 := proc(n) if n=0 then 1 else a[n]; fi; end; G000081 := series(add(a[i]*x^i,i=1..N),x,N+2); # also used in A000055 spec := [ T, {T=Prod(Z,Set(T))} ]; A000081 := n-> combstruct[count](spec,size=n); [seq(combstruct[count](spec,size=n), n=0..40)]; # a much more efficient method for computing the result with Maple. It uses two procedures: a := proc(n) local k; a(n) := add(k*a(k)*s(n-1,k), k=1..n-1)/(n-1) end proc: a(0) := 0: a(1) := 1: s := proc(n,k) local j; s(n,k) := add(a(n+1-j*k), j=1..iquo(n,k)); # Joe Riel (joer(AT)san.rr.com), Jun 23 2008 # even more efficient, uses the Euler transform: with(numtheory): a:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-1))/ (n-1)) end: seq(a(n), n=0..50); # Alois P. Heinz, Sep 06 2008
-
Mathematica
s[ n_, k_ ] := s[ n, k ]=a[ n+1-k ]+If[ n<2k, 0, s[ n-k, k ] ]; a[ 1 ]=1; a[ n_ ] := a[ n ]=Sum[ a[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ a[ i ], {i, 1, 30} ] (* Robert A. Russell *) a[n_] := a[n] = If[n <= 1, n, Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-1}]/(n-1)]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *) a[n_] := a[n] = If[n <= 1, n, Sum[a[n - j] DivisorSum[j, # a[#] &], {j, n - 1}]/(n - 1)]; Table[a[n], {n, 0, 30}] (* Jan Mangaldan, May 07 2014, after Alois P. Heinz *) (* first do *) << NumericalDifferentialEquationAnalysis`; (* then *) ButcherTreeCount[30] (* v8 onward Robert G. Wilson v, Sep 16 2014 *) a[n:0|1] := n; a[n_] := a[n] = Sum[m a[m] a[n-k*m], {m, n-1}, {k, (n-1)/m}]/(n-1); Table[a[n], {n, 0, 30}] (* Vladimir Reshetnikov, Nov 06 2015 *) terms = 31; A[] = 0; Do[A[x] = x*Exp[Sum[A[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 11 2018 *)
-
Maxima
g(m):= block([si,v],s:0,v:divisors(m), for si in v do (s:s+r(m/si)/si),s); r(n):=if n=1 then 1 else sum(Co(n-1,k)/k!,k,1,n-1); Co(n,k):=if k=1 then g(n) else sum(g(i+1)*Co(n-i-1,k-1),i,0,n-k); makelist(r(n),n,1,12); /*Vladimir Kruchinin, Jun 15 2012 */
-
PARI
{a(n) = local(A = x); if( n<1, 0, for( k=1, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff(A, n))}; /* Michael Somos, Dec 16 2002 */
-
PARI
{a(n) = local(A, A1, an, i); if( n<1, 0, an = Vec(A = A1 = 1 + O(x^n)); for( m=2, n, i=m\2; an[m] = sum( k=1, i, an[k] * an[m-k]) + polcoeff( if( m%2, A *= (A1 - x^i)^-an[i], A), m-1)); an[n])}; /* Michael Somos, Sep 05 2003 */
-
PARI
N=66; A=vector(N+1, j, 1); for (n=1, N, A[n+1] = 1/n * sum(k=1,n, sumdiv(k,d, d*A[d]) * A[n-k+1] ) ); concat([0], A) \\ Joerg Arndt, Apr 17 2014
-
Python
from functools import lru_cache from sympy import divisors @lru_cache(maxsize=None) def divisor_tuple(n): # cached unordered tuple of divisors return tuple(divisors(n,generator=True)) @lru_cache(maxsize=None) def A000081(n): return n if n <= 1 else sum(sum(d*A000081(d) for d in divisor_tuple(k))*A000081(n-k) for k in range(1,n))//(n-1) # Chai Wah Wu, Jan 14 2022
-
Sage
@CachedFunction def a(n): if n < 2: return n return add(add(d*a(d) for d in divisors(j))*a(n-j) for j in (1..n-1))/(n-1) [a(n) for n in range(31)] # Peter Luschny, Jul 18 2014 after Alois P. Heinz
-
Sage
[0]+[RootedTrees(n).cardinality() for n in range(1,31)] # Freddy Barrera, Apr 07 2019
Formula
G.f. A(x) satisfies A(x) = x*exp(A(x)+A(x^2)/2+A(x^3)/3+A(x^4)/4+...) [Polya]
Also A(x) = Sum_{n>=1} a(n)*x^n = x / Product_{n>=1} (1-x^n)^a(n).
Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d*a(d) ) * a(n-k+1).
Asymptotically c * d^n * n^(-3/2), where c = A187770 = 0.439924... and d = A051491 = 2.955765... [Polya; Knuth, section 7.2.1.6].
Euler transform is sequence itself with offset -1. - Michael Somos, Dec 16 2001
For n > 1, a(n) = A123467(n-1). - Falk Hüffner, Nov 26 2015
Comments