A000179 Ménage numbers: a(0) = 1, a(1) = -1, and for n >= 2, a(n) = number of permutations s of [0, ..., n-1] such that s(i) != i and s(i) != i+1 (mod n) for all i.
1, -1, 0, 1, 2, 13, 80, 579, 4738, 43387, 439792, 4890741, 59216642, 775596313, 10927434464, 164806435783, 2649391469058, 45226435601207, 817056406224416, 15574618910994665, 312400218671253762, 6577618644576902053, 145051250421230224304, 3343382818203784146955, 80399425364623070680706, 2013619745874493923699123
Offset: 0
Examples
a(2) = 0; nothing works. a(3) = 1; (201) works. a(4) = 2; (2301), (3012) work. a(5) = 13; (20413), (23401), (24013), (24103), (30412), (30421), (34012), (34021), (34102), (40123), (43012), (43021), (43102) work.
References
- W. W. R. Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th Ed. Dover, p. 50.
- M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Nicola Zanichelli Editore, Bologna 1988, Chapter 3, p. 78.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 185, mu(n).
- Kaplansky, Irving and Riordan, John, The probleme des menages, Scripta Math. 12, (1946). 113-124. See u_n.
- E. Lucas, Théorie des nombres, Paris, 1891, pp. 491-495.
- P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 1, p 256.
- T. Muir, A Treatise on the Theory of Determinants. Dover, NY, 1960, Sect. 132, p. 112. - N. J. A. Sloane, Feb 24 2011
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 197.
- V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr. Mat. (J. of the Akademy of Sciences of Russia) 4(1992), 91-110. - Vladimir Shevelev, Mar 22 2010
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- H. M. Taylor, A problem on arrangements, Mess. Math., 32 (1902), 60ff.
- J. Touchard, Permutations discordant with two given permutations, Scripta Math., 19 (1953), 108-119.
- J. H. van Lint, Combinatorial Theory Seminar, Eindhoven University of Technology, Springer Lecture Notes in Mathematics, Vol. 382, 1974. See page 10.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..450 (terms 0..100 from T. D. Noe)
- M. A. Alekseyev, Weighted de Bruijn Graphs for the Menage Problem and Its Generalizations. Lecture Notes in Computer Science 9843 (2016), 151-162. doi:10.1007/978-3-319-44543-4_12 arXiv:1510.07926, [math.CO], 2015-2016.
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-135.
- Kenneth P. Bogart and Peter G. Doyle, Nonsexist solution of the ménage problem, Amer. Math. Monthly 93 (1986), no. 7, 514-519.
- A. Cayley, On a problem of arrangements, Proceedings of the Royal Society of Edinburgh 9 (1878) 338-342.
- A. Cayley, On a problem of arrangements, Proceedings of the Royal Society of Edinburgh 9 (1878) 338-342.
- A. Cayley, On Mr Muir's discussion of Professor Tait's problem of arrangements, Proceedings of the Royal Society of Edinburgh 9 (1878) 388-391.
- A. Cayley, On Mr Muir's discussion of Professor Tait's problem of arrangements, Proceedings of the Royal Society of Edinburgh 9 (1878) 388-391.
- J. Dutka, On the Probleme des Menages, Mathem. Conversat. (2001) 277-287, reprinted from Math. Intell. 8 (1986) 18-25
- A. de Gennaro, How many latin rectangles are there?, arXiv:0711.0527 [math.CO] (2007), see p. 2.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 372
- Nick Hobson, Python program for this sequence.
- Peter Kagey, Ranking and Unranking Restricted Permutations, arXiv:2210.17021 [math.CO], 2022.
- Irving Kaplansky, Solution of the "Problème des ménages", Bull. Amer. Math. Soc. 49, (1943). 784-785.
- Irving Kaplansky, Symbolic solution of certain problems in permutations, Bull. Amer. Math. Soc., 50 (1944), 906-914.
- I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. [Scan of annotated copy]
- S. M. Kerawala, Asymptotic solution of the "Probleme des menages, Bull. Calcutta Math. Soc., 39 (1947), 82-84. [Annotated scanned copy]
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 221.
- D. E. Knuth, Comments on A000179, Nov 25 2018 - Nov 27 2018.
- D. E. Knuth, Donald Knuth's 24th Annual Christmas Lecture: Dancing Links, Stanfordonline, Video published on YouTube, Dec 12, 2018.
- A. R. Kräuter, Über die Permanente gewisser zirkulärer Matrizen..., Séminaire Lotharingien de Combinatoire, B11b (1984), 11 pp.
- Yiting Li, Ménage Numbers and Ménage Permutations, J. Int. Seq. 18 (2015) 15.6.8
- E. Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, Vol. 1, p. 495.
- T. Muir, On Professor Tait's problem of arrangement, Proceedings of the Royal Society of Edinburgh 9 (1878) 382-387.
- T. Muir, On Professor Tait's problem of arrangement, Proceedings of the Royal Society of Edinburgh 9 (1878) 382-387.
- Vladimir Shevelev and Peter J. C. Moses, The ménage problem with a known mathematician, arXiv:1101.5321 [math.CO], 2011, 2015.
- Vladimir Shevelev and Peter J. C. Moses, Alice and Bob go to dinner: A variation on menage, INTEGERS, Vol. 16 (2016), #A72.
- R. J. Stones, S. Lin, X. Liu and G. Wang, On Computing the Number of Latin Rectangles, Graphs and Combinatorics (2016) 32:1187-1202; DOI 10.1007/s00373-015-1643-1.
- H. M. Taylor, A problem on arrangements, Mess. Math., 32 (1902), 60ff. [Annotated scanned copy]
- J. Touchard, Théorie des substitutions. Sur un problème de permutations, C. R. Acad. Sci. Paris 198 (1934), 631-633.
- Eric Weisstein's World of Mathematics, Married Couples Problem.
- Eric Weisstein's World of Mathematics, Rooks Problem.
- Wikipedia, Menage problem.
- M. Wyman and L. Moser, On the problème des ménages, Canad. J. Math., 10 (1958), 468-480.
- D. Zeilberger, Automatic Enumeration of Generalized Menage Numbers, arXiv preprint arXiv:1401.1089 [math.CO], 2014.
Crossrefs
Cf. A000904, A059375, A102761, A000186, A094047, A067998, A033999, A258664, A258665, A258666, A258667, A258673, A259212, A213234, A000023.
A000179, A102761, and A335700 are all essentially the same sequence but with different conventions for the initial terms a(0) and a(1). - N. J. A. Sloane, Aug 06 2020
Programs
-
Haskell
import Data.List (zipWith5) a000179 n = a000179_list !! n a000179_list = 1 : -1 : 0 : 1 : zipWith5 (\v w x y z -> (x * y + (v + 2) * z - w) `div` v) [2..] (cycle [4,-4]) (drop 4 a067998_list) (drop 3 a000179_list) (drop 2 a000179_list) -- Reinhard Zumkeller, Aug 26 2013
-
Maple
A000179:= n ->add ((-1)^k*(2*n)*binomial(2*n-k,k)*(n-k)!/(2*n-k), k=0..n); # for n >= 1 U:= proc(n) local k; add( (2*n/(2*n-k))*binomial(2*n-k,k)*(n-k)!*(x-1)^k, k=0..n); end; W := proc(r,s) coeff( U(r),x,s ); end; A000179 := n->W(n,0); # valid for n >= 1
-
Mathematica
a[n_] := 2*n*Sum[(-1)^k*Binomial[2*n - k, k]*(n - k)!/(2*n - k), {k, 0, n}]; a[0] = 1; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 05 2012, from 2nd formula *)
-
PARI
\\ 3 programs adapted to a(1) = -1 by Hugo Pfoertner, Aug 31 2020
-
PARI
{a(n) = my(A); if( n, A = vector(n,i,i-2); for(k=4, n, A[k] = (k * (k - 2) * A[k-1] + k * A[k-2] - 4 * (-1)^k) / (k-2)); A[n], 1)};/* Michael Somos, Jan 22 2008 */
-
PARI
a(n)=if(n>1, round(2*n*exp(-2)*besselk(n, 2)), 1-2*n) \\ Charles R Greathouse IV, Nov 03 2014
-
PARI
{a(n) = my(A); if( n, A = vector(n,i,i-2); for(k=5, n, A[k] = k * A[k-1] + 2 * A[k-2] + (4-k) * A[k-3] - A[k-4]); A[n], 1)} /* Michael Somos, May 02 2018 */
-
Python
from math import comb, factorial def A000179(n): return 1 if n == 0 else sum((-2*n if k & 1 else 2*n)*comb(m:=2*n-k,k)*factorial(n-k)//m for k in range(n+1)) # Chai Wah Wu, May 27 2022
Formula
a(n) = ((n^2-2*n)*a(n-1) + n*a(n-2) - 4*(-1)^n)/(n-2) for n >= 3.
a(n) = A059375(n)/(2*n!) for n >= 2.
a(n) = Sum_{k=0..n} (-1)^k*(2*n)*binomial(2*n-k, k)*(n-k)!/(2*n-k) for n >= 1. - Touchard (1934)
G.f.: ((1-x)/(1+x))*Sum_{n>=0} n!*(x/(1+x)^2)^n. - Vladeta Jovovic, Jun 26 2007
a(2^k+2) == 0 (mod 2^k); for k >= 2, a(2^k) == 2(mod 2^k). - Vladimir Shevelev, Jan 14 2011
a(n) = round( 2*n*exp(-2)*BesselK(n,2) ) for n > 1. - Mark van Hoeij, Oct 25 2011
a(n) ~ (n/e)^n * sqrt(2*Pi*n)/e^2. - Charles R Greathouse IV, Jan 21 2016
0 = a(n)*(-a(n+2) +a(n+4)) +a(n+1)*(+a(n+1) +a(n+2) -3*a(n+3) -5*a(n+4) +a(n+5)) +a(n+2)*(+2*a(n+2) +3*a(n+3) -3*a(n+4)) +a(n+3)*(+2*a(n+3) +a(n+4) -a(n+5)) +a(n+4)*(+a(n+4)), for all n>1. If a(-2..1) = (0, -1, 2, -1) then also true for those values of n. - Michael Somos, Apr 29 2018
D-finite with recurrence: 0 = a(n) +n*a(n+1) -2*a(n+2) +(-n-4)*a(n+3) +a(n+4), for all n in Z where a(n) = a(-n) for all n in Z and a(0) = 2, a(1) = -1. - Michael Somos, May 02 2018
a(n) = Sum_{k=0..n} A213234(n,k) * A000023(n-2*k) = Sum_{k=0..n} (-1)^k * n/(n-k) * binomial(n-k, k) * (n-2*k)! Sum_{j=0..n-2*k} (-2)^j/j! for n >= 1. [Wyman and Moser (1958)]. - William P. Orrick, Jun 25 2020
a(k+4*p) - 2*a(k+2*p) + a(k) is divisible by p, for any k > 0 and any prime p. - Mark van Hoeij, Jan 11 2022
Extensions
More terms from James Sellers, May 02 2000
Additional comments from David W. Wilson, Feb 18 2003
a(1) changed to -1 at the suggestion of Don Knuth. - N. J. A. Sloane, Nov 26 2018
Comments