cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000503 a(n) = floor(tan(n)).

Original entry on oeis.org

0, 1, -3, -1, 1, -4, -1, 0, -7, -1, 0, -226, -1, 0, 7, -1, 0, 3, -2, 0, 2, -2, 0, 1, -3, -1, 1, -4, -1, 0, -7, -1, 0, -76, -1, 0, 7, -1, 0, 3, -2, 0, 2, -2, 0, 1, -3, -1, 1, -4, -1, 0, -7, -1, 0, -46, -1, 0, 8, -1, 0, 3, -2, 0, 2, -2, 0, 1, -3, -1, 1, -4, -1, 0, -6, -1, 0, -33, -1, 0, 9, -1, 0, 3, -2, 0, 2, -2, 0, 1, -2, -1, 1, -3, -1, 0, -6, -1, 0, -26
Offset: 0

Views

Author

Keywords

Comments

Every integer appears infinitely often. - Charles R Greathouse IV, Aug 06 2012
Does not satisfy Benford's law [Whyman et al., 2016]. - N. J. A. Sloane, Feb 12 2017

Crossrefs

Programs

Extensions

More terms from Stefan Steinerberger, Apr 09 2006

A000493 a(n) = floor(sin(n)).

Original entry on oeis.org

0, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A032615, A126564 (even bisection), A000480 (floor cos(n)).

Programs

  • Magma
    [Floor(Sin(n)): n in [0..100]]; // Vincenzo Librandi, Jun 15 2015
  • Maple
    f := n->floor(evalf(sin(n)));
  • Mathematica
    f[ n_ ] := Floor[ N[ Sin[ n ] ] ]
    Floor[Sin[Range[0,90]]] (* Harvey P. Dale, Dec 04 2012 *)

Formula

a(n) = -(A032615(n) mod 2). - Robert Israel, Jun 14 2015

A037448 a(n) = floor(cot(n)).

Original entry on oeis.org

0, -1, -8, 0, -1, -4, 1, -1, -3, 1, -1, -2, 2, 0, -2, 3, 0, -1, 6, 0, -1, 112, 0, -1, -8, 0, -1, -4, 1, -1, -3, 1, -1, -2, 2, 0, -2, 3, 0, -1, 6, 0, -1, 56, 0, -1, -9, 0, -1, -4, 1, -1, -3, 1, -1, -2, 2, 0, -2, 3, 0, -1, 5, 0, -1, 37, 0, -1, -9, 0, -1, -4, 1, -1, -3, 1, -1, -2, 2, 0, -2, 3, 0, -1, 5, 0, -1, 28, 0, -1, -10, 0, -1, -4, 1, -1, -3
Offset: 1

Views

Author

Jason Earls, Jun 30 2001

Keywords

Comments

Contains all integers infinitely often. - Charles R Greathouse IV, Aug 06 2012

Crossrefs

Programs

  • Magma
    [Floor(Cot(n)): n in [1..100]]; // Vincenzo Librandi, Jun 15 2015
  • Mathematica
    Floor[Cot[Range[100]]] (* Harvey P. Dale, Dec 26 2024 *)
  • PARI
    v=[]; for(n=1,260,v=concat(v,floor(cotan(n)))); v
    

Extensions

a(44) corrected by T. D. Noe, Jan 21 2008

A126564 a(n) = floor( sin(n)*cos(n) ).

Original entry on oeis.org

0, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, 0
Offset: 0

Views

Author

Rick L. Shepherd, Dec 27 2006

Keywords

Crossrefs

Programs

  • PARI
    a(n) = floor(sin(n)*cos(n))

Formula

a(n) = floor(sin(n)*cos(n)).
a(n) = floor(sin(2n)/2). [Wesley Ivan Hurt, Jun 22 2013]

A195911 a(n) = ceiling(cot(n)).

Original entry on oeis.org

1, 0, -7, 1, 0, -3, 2, 0, -2, 2, 0, -1, 3, 1, -1, 4, 1, 0, 7, 1, 0, 113, 1, 0, -7, 1, 0, -3, 2, 0, -2, 2, 0, -1, 3, 1, -1, 4, 1, 0, 7, 1, 0, 57, 1, 0, -8, 1, 0, -3, 2, 0, -2, 2, 0, -1, 3, 1, -1, 4, 1, 0, 6, 1, 0, 38, 1, 0, -8, 1, 0, -3, 2, 0, -2, 2, 0, -1, 3
Offset: 1

Views

Author

Mohammad K. Azarian, Mar 15 2012

Keywords

Crossrefs

Programs

A249988 Integer part of sine of n degrees multiplied by 1000.

Original entry on oeis.org

0, 17, 34, 52, 69, 87, 104, 121, 139, 156, 173, 190, 207, 224, 241, 258, 275, 292, 309, 325, 342, 358, 374, 390, 406, 422, 438, 453, 469, 484, 500, 515, 529, 544, 559, 573, 587, 601, 615, 629, 642, 656, 669, 681, 694, 707, 719, 731, 743, 754, 766, 777, 788, 798, 809, 819, 829, 838, 848, 857, 866
Offset: 0

Views

Author

Alex Ratushnyak, Nov 11 2014

Keywords

Comments

Due to multiplication by 1000 almost all a(n) are different for n<90, the only exception is a(89)=a(88)=999.

Examples

			sin(Pi/2) = sin(90 deg.) = 1, so a(90)=1000.
		

Crossrefs

Programs

  • Mathematica
    Table[IntegerPart[1000*Sin[n Degree]],{n,0,60}] (* Harvey P. Dale, May 22 2015 *)
  • Python
    import math
    for n in range(381): print(int(1000*math.sin(math.pi*n/180)), end=', ')

Formula

a(n) = round(1000*sin(Pi*n/180)), where round() is the rounding towards zero function.
a(360+n) = a(n).
a(180+n) = -a(n).

Extensions

Corrected and extended by Harvey P. Dale, May 22 2015
Showing 1-6 of 6 results.