cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A042977 Triangle T(n,k) read by rows: coefficients of a polynomial sequence occurring when calculating the n-th derivative of Lambert function W.

Original entry on oeis.org

1, -2, -1, 9, 8, 2, -64, -79, -36, -6, 625, 974, 622, 192, 24, -7776, -14543, -11758, -5126, -1200, -120, 117649, 255828, 248250, 137512, 45756, 8640, 720, -2097152, -5187775, -5846760, -3892430, -1651480, -445572, -70560, -5040
Offset: 0

Views

Author

Keywords

Comments

The first derivative of the Lambert W function is given by dW/dz = exp(-W)/(1+W). Further differentiation yields d^2/dz^2(W) = exp(-2*W)*(-2-W)/(1+W)^3, d^3/dz^3(W) = exp(-3*W)*(9+8*W+2*W^2)/(1+W)^5 and, in general, d^n/dz^n(W) = exp(-n*W)*R(n,W)/(1+W)^(2*n-1), where R(n,W) are the row polynomials of this triangle. - Peter Bala, Jul 22 2012
Conjecture: the polynomials have no real roots greater than or equal to -1. This is equivalent to the statement that the derivatives of the 0th branch of the Lambert W function have no real roots greater than -1/e. - Colin Linzer, Jan 29 2025

Examples

			Triangle begins:
 n\k |    1    W   W^2   W^3   W^4
==================================
  1  |    1
  2  |   -2   -1
  3  |    9    8     2
  4  |  -64  -79   -36    -6
  5  |  625  974   622   192    24
...
T(5,2) = -4*(-79) - 9*(-36) + 3*(-6) = 622.
		

Crossrefs

Cf. A013703 (twice row sums), A000444, A000525, A064781, A064785, A064782.
First column A000169, main diagonal A000142, first subdiagonal A052582.
Cf. A054589.

Programs

  • Maple
    # After Vladimir Kruchinin, for 0 <= m <= n:
    T := (n, m) -> add(add((-1)^(k+n)*binomial(j,k)*binomial(2*n+1,m-j)*(k+n+1)^(n+j), k=0..j)/j!, j=0..m): seq(seq(T(n, k), k=0..n), n=0..7); # Peter Luschny, Feb 23 2018
  • Mathematica
    Table[ Simplify[ (Evaluate[ D[ ProductLog[ z ], {z, n} ] ] /. ProductLog[ z ]->W)*z^n/W^n (1+W)^(2n-1) ], {n, 12} ] // TableForm
    Flatten[ Table[ CoefficientList[ Simplify[ (Evaluate[D[ProductLog[z], {z, n}]] /. ProductLog[z] -> W) z^n / W^n (1 + W)^(2 n - 1)], W], {n, 8}]] (* Michael Somos, Jun 07 2012 *)
    T[ n_, k_] := If[ n < 1 || k < 0, 0, Coefficient[ Simplify[(Evaluate[D[ProductLog[z], {z, n}]] /. ProductLog[z] -> W) z^n / W^n (1 + W)^(2 n - 1)], W, k]] (* Michael Somos, Jun 07 2012 *)
  • Maxima
    B(n):=(if n=1 then 1/(1+x)*exp(-x) else -n!*sum((sum((-1)^(m-j)*binomial(m,j)*sum((j^(n-i)*binomial(j,i)*x^(m-i))/(n-i)!,i,0,n),j,1,m))*B(m)/m!,m,1,n-1)/(1+x)^n);
    a(n):=B(n)*(1+x)^(2*n-1);
    /* Vladimir Kruchinin, Apr 07 2011 */
    
  • Maxima
    a(n):=if n=1 then 1 else (n-1)!*(sum((binomial(n+k-1, n-1)*sum(binomial(k, j)*(x+1)^(n-j-1)*sum(binomial(j, l)*(-1)^(l)*sum((l^(n+j-i-1)*binomial(l, i)*x^(j-i))/(n+j-i-1)!, i, 0, l), l, 1, j), j, 1, k)), k, 1, n-1));
    T(n, k):=coeff(ratsimp(a(n)), x, k);
    for n: 1 thru 12 do print(makelist(T(n, k), k, 0, n-1));
    /* Vladimir Kruchinin, Oct 09 2012 */
    T(n,m):=sum(binomial(2*n+1,m-j)*sum(((n+k+1)^(n+j)*(-1)^(n+k))/((j-k)!*k!),k,0,j),j,0,m); /* Vladimir Kruchinin, Feb 20 2018 */

Formula

E.g.f.: (LambertW(exp(x)*(x+y*(1+x)^2))-x)/(1+x). - Vladeta Jovovic, Nov 19 2003
a(n) = B(n)*(1+x)^(2*n-1), where B(1) = 1/(1+x), and for n>=2, B(n) = -(n!/(1+x)^n)*Sum_{m=1..n-1} (B(m)/m!)*Sum_{j=1..m} (-1)^(m-j)*binomial(m,j)*Sum_{i=0..n} j^(n-i)*binomial(j,i)*x^(m-i)/(n-i)!. - Vladimir Kruchinin, Apr 07 2011
Recurrence equation: T(n+1,k) = -n*T(n,k-1) - (3*n-k-1)*T(n,k) + (k+1)*T(n,k+1). - Peter Bala, Jul 22 2012
T(n,m) = Sum_{j=0..m} C(2*n+1,m-j)*(Sum_{k=0..j} (n+k+1)^(n+j)*(-1)^(n+k)/((j-k)!*k!)). - Vladimir Kruchinin, Feb 20 2018

A008295 Triangle read by rows: T(n,k) is the number of partially labeled rooted trees with n vertices, k of which are labeled, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 5, 9, 9, 4, 13, 34, 64, 64, 9, 35, 119, 326, 625, 625, 20, 95, 401, 1433, 4016, 7776, 7776, 48, 262, 1316, 5799, 21256, 60387, 117649, 117649, 115, 727, 4247, 22224, 100407, 373895, 1071904, 2097152, 2097152
Offset: 0

Views

Author

Keywords

Comments

T(n, k) where n counts the vertices and 0 <= k <= n counts the labels. - Sean A. Irvine, Mar 22 2018

Examples

			Triangle begins with T(0,0):
n\k 0  1   2    3    4    5    6
0   1
1   1  1
2   1  2   2
3   2  5   9    9
4   4 13  34   64   64
5   9 35 119  326  625  625
6  20 95 401 1433 4016 7776 7776
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 134.

Crossrefs

Main diagonal is A000169.
Cf. A034799.

Programs

  • Mathematica
    m = 9; r[_] = 0;
    Do[r[x_] = x Exp[Sum[r[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, m}];
    r[x_, y_] = -ProductLog[(-E^(-r[x])) r[x] - (r[x] y)/E^r[x]];
    (CoefficientList[#, y] Range[0, Exponent[#, y]]!)& /@ CoefficientList[r[x, y] + O[x]^m, x] /. {} -> {1} // Flatten // Quiet (* Jean-François Alcover, Oct 23 2019 *)

Formula

E.g.f.: r(x,y) = T(n,k) * y^k * x^n / k! satisfies r(x,y) * exp(r(x)) = (1+y) * r(x) * exp(r(x,y)) where r(x) is the o.g.f. for A000081. - Sean A. Irvine, Mar 22 2018

Extensions

More terms from Sean A. Irvine, Mar 22 2018
Name edited by Andrew Howroyd, Mar 23 2023
Showing 1-2 of 2 results.