cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000542 Sum of 8th powers: 1^8 + 2^8 + ... + n^8.

Original entry on oeis.org

0, 1, 257, 6818, 72354, 462979, 2142595, 7907396, 24684612, 67731333, 167731333, 382090214, 812071910, 1627802631, 3103591687, 5666482312, 9961449608, 16937207049, 27957167625, 44940730666, 70540730666, 108363590027, 163239463563, 241550448844
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 815.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 8 of array A103438.
Cf. A069093.

Programs

  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^8 od: seq(a[n], n=0..23); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    lst={};s=0;Do[s=s+n^8;AppendTo[lst, s], {n, 10^2}];lst..or..Table[Sum[k^8, {k, 1, n}], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
    s = 0; lst = {s}; Do[s += n^8; AppendTo[lst, s], {n, 1, 30, 1}]; lst (* Zerinvary Lajos, Jul 12 2009 *)
    Accumulate[Range[0,30]^8] (* Harvey P. Dale, Jun 17 2015 *)
  • PARI
    a(n)=n*(n+1)*(2*n+1)*(5*n^6+15*n^5+5*n^4-15*n^3-n^2+9*n-3)/90 \\ Charles R Greathouse IV, Sep 28 2015
  • Python
    A000542_list, m = [0], [40320, -141120, 191520, -126000, 40824, -5796, 254, -1, 0, 0]
    for _ in range(24):
        for i in range(9):
            m[i+1] += m[i]
        A000542_list.append(m[-1])
    print(A000542_list) # Chai Wah Wu, Nov 05 2014
    
  • Sage
    [bernoulli_polynomial(n,9)/9 for n in range(1, 25)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = n*(n+1)*(2*n+1)*(5*n^6 + 15*n^5 + 5*n^4 - 15*n^3 - n^2 + 9*n - 3)/90.
a(n) = n*A000541(n) - Sum_{i=0..n-1} A000541(i). - Bruno Berselli, Apr 26 2010
G.f.: x*(x+1)*(x^6 + 246*x^5 + 4047*x^4 + 11572*x^3 + 4047*x^2 + 246*x + 1)/(x-1)^10. - Colin Barker, May 27 2012
a(n) = 9*a(n-1) - 36* a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) + 40320. - Ant King, Sep 24 2013
a(n) = -Sum_{j=1..8} j*Stirling1(n+1,n+1-j)*Stirling2(n+8-j,n). - Mircea Merca, Jan 25 2014
a(n) = Sum_{i = 1..n} J_8(i)*floor(n/i), where J_8 is A069093. - Ridouane Oudra, Jul 17 2025