cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A022341 a(n) = 4*A003714(n) + 1; the odd Fibbinary numbers.

Original entry on oeis.org

1, 5, 9, 17, 21, 33, 37, 41, 65, 69, 73, 81, 85, 129, 133, 137, 145, 149, 161, 165, 169, 257, 261, 265, 273, 277, 289, 293, 297, 321, 325, 329, 337, 341, 513, 517, 521, 529, 533, 545, 549, 553, 577, 581, 585, 593, 597, 641, 645, 649, 657, 661, 673, 677, 681
Offset: 0

Views

Author

Keywords

Comments

Numbers k such that (k+1) does not divide C(3k, k) - C(2k, k). - Benoit Cloitre, May 23 2004
Each term is the unique odd number a(n) = Sum_{i in S} 2^i such that n = Sum_{i in S} F_i, where F_i is the i-th Fibonacci number, A000045(i), and S is a set of nonnegative integers of which no two are adjacent. Note that this corresponds to adding F_0 to the Zeckendorf representation of n, which does not change the number being represented, because F_0 = 0. - Peter Munn, Sep 02 2022

Crossrefs

First column of A356875.

Programs

  • Maple
    F:= combinat[fibonacci]:
    b:= proc(n) local j;
          if n=0 then 0
        else for j from 2 while F(j+1)<=n do od;
             b(n-F(j))+2^(j-2)
          fi
        end:
    a:= n-> 4*b(n)+1:
    seq(a(n), n=0..70);  # Alois P. Heinz, May 15 2016
  • Mathematica
    Select[Range[1, 511, 2], BitAnd[#, 2#] == 0 &] (* Alonso del Arte, Jun 18 2012 *)
  • Python
    for n in range(1, 700, 2):
        if n*2 & n == 0:
            print(n, end=',')
    
  • Python
    def A022341(n):
        tlist, s = [1,2], 0
        while tlist[-1]+tlist[-2] <= n: tlist.append(tlist[-1]+tlist[-2])
        for d in tlist[::-1]:
            if d <= n:
                s += 1
                n -= d
            s <<= 1
        return (s<<1)|1 # Chai Wah Wu, Apr 24 2025
    
  • Scala
    (1 to 511 by 2).filter(n => (n & 2 * n) == 0) // Alonso del Arte, Apr 12 2020
    (C#)
    public static bool IsOddFibbinaryNum(this int n) => ((n & (n >> 1)) == 0) && (n % 2 == 1) ? true : false; // Frank Hollstein, Jul 07 2021

Extensions

More terms from Benoit Cloitre, May 23 2004 and Alonso del Arte, Jun 18 2012
Name edited by Peter Munn, Sep 02 2022

A060774 a(n) = number of lattice paths from (0,0,0) to (n,n,n) along the cracks on the surface of a Rubik-ized n X n X n cube so that no step increases distance from goal.

Original entry on oeis.org

1, 6, 54, 384, 2550, 16506, 105840, 677088, 4335606, 27829230, 179161554, 1156987728, 7493841264, 48672149064, 316920674880, 2068273848384, 13525486999542, 88612412883030, 581503640659830, 3821691744347400, 25150239955660050, 165713382866931570
Offset: 0

Views

Author

Len Smiley, Apr 25 2001

Keywords

Comments

3-dimensional version of block-walking (0,0) to (n,n) in binomial(2n,n) ways.

Examples

			a(1)=6: XYZ, XZY, YXZ, YZX, ZXY, ZYX.
		

Crossrefs

Column k=3 of A225094.

Programs

  • Maple
    A060774 := proc(n)
            `if`(n=0, 1,
            6*(binomial(3*n,n)-binomial(2*n,n)) ) ;
    end proc: # R. J. Mathar, Oct 31 2015
  • Mathematica
    Rest[CoefficientList[Series[-(6/Sqrt[1-4z])+(12Cos[ArcCos[1-27z/2]/6])/Sqrt[4-27z], {z, 0, 20}], z]] (* Benedict W. J. Irwin, Jul 12 2016 *)
  • PARI
    j=[]; for(n=1,50,j=concat(j,6*(binomial(3*n,n)-binomial(2*n,n)))); j
    
  • PARI
    { for (n=1, 200, write("b060774.txt", n, " ", 6*(binomial(3*n, n) - binomial(2*n, n))); ) } \\ Harry J. Smith, Jul 11 2009

Formula

a(n) = 6*binomial(3n, n) - 6*binomial(2n, n).
a(n) = 6*A000846(n) for n>0. - R. J. Mathar, Oct 31 2015
Conjecture: 2*n*(2*n-1)*(n-1)*a(n) + (n-1)*(13*n^2-209*n+258)*a(n-1) + 2*(-259*n^3+1785*n^2-3728*n+2460)*a(n-2) + 6*(295*n^3-2068*n^2+4833*n-3780)*a(n-3) - 36*(3*n-10)*(2*n-7)*(3*n-11)*a(n-4) = 0. - R. J. Mathar, Oct 31 2015
Conjecture: 2*n*(n-1)*(2*n-1)*(11*n^2-33*n+24)*a(n) - (n-1)*(473*n^4-1892*n^3+2561*n^2-1338*n+216)*a(n-1) + 6*(3*n-5)*(3*n-4)*(2*n-3)*(11*n^2-11*n+2)*a(n-2) = 0. - R. J. Mathar, Oct 31 2015
From Benedict W. J. Irwin, Jul 12 2016: (Start)
G.f.: -6/sqrt(1-4*x) + 12*cos(arccos(1-27*x/2)/6)/sqrt(4-27*x).
E.g.f: -6*E^(2*x)*BesselI(0,2*x) + 6*2F2(1/3,2/3;1/2,1;27*x/4).
(End)
a(n) ~ 4^(-n)*(3^(3*n+3/2))/sqrt(Pi*n). - Ilya Gutkovskiy, Jul 12 2016

Extensions

Corrected by Franklin T. Adams-Watters and T. D. Noe, Oct 25 2006
a(0)=1 prepended by Alois P. Heinz, Sep 09 2016
Showing 1-2 of 2 results.