A022341 a(n) = 4*A003714(n) + 1; the odd Fibbinary numbers.
1, 5, 9, 17, 21, 33, 37, 41, 65, 69, 73, 81, 85, 129, 133, 137, 145, 149, 161, 165, 169, 257, 261, 265, 273, 277, 289, 293, 297, 321, 325, 329, 337, 341, 513, 517, 521, 529, 533, 545, 549, 553, 577, 581, 585, 593, 597, 641, 645, 649, 657, 661, 673, 677, 681
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Estelle Basor, Brian Conrey, and Kent E. Morrison, Knots and ones, arXiv:1703.00990 [math.GT], 2017. See page 2.
- Linus Lindroos, Andrew Sills, and Hua Wang, Odd fibbinary numbers and the golden ration, Fib. Q., 52 (2014), 61-65.
- Linus Lindroos, Andrew Sills, and Hua Wang, Odd fibbinary numbers and the golden ration, Fib. Q., 52 (2014), 61-65.
- A. J. Macfarlane, On the fibbinary numbers and the Wythoff array, arXiv:2405.18128 [math.CO], 2024. See page 6.
- D. M. McKenna, Fibbinary Zippers in a Monoid of Toroidal Hamiltonian Cycles that Generate Hilbert-style Square-filling Curves, Enumerative Combinatorics and Applications, 2:2 #S2R13 (2021).
Programs
-
Maple
F:= combinat[fibonacci]: b:= proc(n) local j; if n=0 then 0 else for j from 2 while F(j+1)<=n do od; b(n-F(j))+2^(j-2) fi end: a:= n-> 4*b(n)+1: seq(a(n), n=0..70); # Alois P. Heinz, May 15 2016
-
Mathematica
Select[Range[1, 511, 2], BitAnd[#, 2#] == 0 &] (* Alonso del Arte, Jun 18 2012 *)
-
Python
for n in range(1, 700, 2): if n*2 & n == 0: print(n, end=',')
-
Python
def A022341(n): tlist, s = [1,2], 0 while tlist[-1]+tlist[-2] <= n: tlist.append(tlist[-1]+tlist[-2]) for d in tlist[::-1]: if d <= n: s += 1 n -= d s <<= 1 return (s<<1)|1 # Chai Wah Wu, Apr 24 2025
-
Scala
(1 to 511 by 2).filter(n => (n & 2 * n) == 0) // Alonso del Arte, Apr 12 2020 (C#) public static bool IsOddFibbinaryNum(this int n) => ((n & (n >> 1)) == 0) && (n % 2 == 1) ? true : false; // Frank Hollstein, Jul 07 2021
Extensions
More terms from Benoit Cloitre, May 23 2004 and Alonso del Arte, Jun 18 2012
Name edited by Peter Munn, Sep 02 2022
Comments