A001019 Powers of 9: a(n) = 9^n.
1, 9, 81, 729, 6561, 59049, 531441, 4782969, 43046721, 387420489, 3486784401, 31381059609, 282429536481, 2541865828329, 22876792454961, 205891132094649, 1853020188851841, 16677181699666569, 150094635296999121, 1350851717672992089, 12157665459056928801
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Integers. London: Penguin Books (1997): p. 196, entry for 109,418,989,131,512,359,209.
Links
- T. D. Noe, Table of n, a(n) for n = 0..100.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 274
- Tanya Khovanova, Recursive Sequences
- R. J. Mathar, Counting Walks on Finite Graphs, Nov 2020, Section 4.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Index entries for linear recurrences with constant coefficients, signature (9).
Programs
-
Haskell
a001019 = (9 ^) a001019_list = iterate (* 9) 1 -- Reinhard Zumkeller, Feb 12 2013
-
Magma
[9^n : n in [0..25]]; // Wesley Ivan Hurt, Sep 27 2016
-
Maple
A001019:=n->9^n: seq(A001019(n), n=0..25); # Wesley Ivan Hurt, Sep 27 2016
-
Mathematica
Table[9^n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *) NestList[9#&,1,20] (* Harvey P. Dale, Jul 04 2014 *)
-
Maxima
A001019(n):=9^n$ makelist(A001019(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
a(n)=9^n \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = 9^n.
a(0) = 1, a(n) = 9*a(n - 1) for n > 0.
G.f.: 1/(1 - 9*x).
E.g.f.: exp(9*x).
a(n) = 4*A211866(n)+5. - Reinhard Zumkeller, Feb 12 2013
a(n) = det(|v(i+2,j)|, 1 <= i,j <= n), where v(n,k) are central factorial numbers of the first kind with odd indices. - Mircea Merca, Apr 04 2013
Comments