A055275 First differences of 9^n (A001019).
1, 8, 72, 648, 5832, 52488, 472392, 4251528, 38263752, 344373768, 3099363912, 27894275208, 251048476872, 2259436291848, 20334926626632, 183014339639688, 1647129056757192, 14824161510814728, 133417453597332552, 1200757082375992968, 10806813741383936712, 97261323672455430408, 875351913052098873672
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for linear recurrences with constant coefficients, signature (9).
Crossrefs
Cf. A001019.
Programs
-
Magma
[1] cat [8*9^(n-1): n in [1..25]]; // G. C. Greubel, Mar 16 2020
-
Maple
1, seq(8*9^(n-1), n=1..25); # G. C. Greubel, Mar 16 2020
-
Mathematica
q = 9; Join[{a = 1}, Table[If[n == 0, a = q*a - 1, a = q*a], {n, 0, 25}]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *) Join[{1},NestList[9#&,8,30]] (* Harvey P. Dale, Aug 23 2024 *)
-
PARI
a(n)=if(n,8*9^(n-1),1) \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[1]+[8*9^(n-1) for n in (1..25)] # G. C. Greubel, Mar 16 2020
Formula
G.f.: (1-x)/(1-9x).
a(n) = 8*9^(n-1); a(0)=1.
a(n) = 9a(n-1) + (-1)^n*C(1,1-n).
E.g.f.: (1 + 8*exp(9*x))/9. - G. C. Greubel, Mar 16 2020
Comments