cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A002042 a(n) = 7*4^n.

Original entry on oeis.org

7, 28, 112, 448, 1792, 7168, 28672, 114688, 458752, 1835008, 7340032, 29360128, 117440512, 469762048, 1879048192, 7516192768, 30064771072, 120259084288, 481036337152, 1924145348608, 7696581394432, 30786325577728, 123145302310912, 492581209243648
Offset: 0

Views

Author

Keywords

Comments

Subsequence of A000069, the odious numbers. - Reinhard Zumkeller, Aug 26 2007
A rectangular prism with edge lengths 2^n, 2^(n+1) and 2^(n+2) has a surface area 2* (2^n*2^(n+1) + 2^(n+1)*2^(n+2) + 2^n*2^(n+2)) which equals 4*a(n). - J. M. Bergot, Aug 07 2013
x = A306472(n) and y = a(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 3^(6*n+1) = 4*y^3 (see Theorem 2.1 in Chakraborty, Hoque and Sharma). - Stefano Spezia, Feb 18 2019

Crossrefs

First differences of A083597. Bisection of A005009.
Cf. A306472 (37*27^n), A009971 (27^n), A000302 (4^n), A000290 (n^2), A000578 (n^3).

Programs

Formula

From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 4*a(n-1), n > 0, with a(0) = 7.
G.f.: 7/(1-4*x). (End)
a(n) = 7*A000302(n). - Michel Marcus, Jun 24 2015
E.g.f.: 7*exp(4*x). - G. C. Greubel, Feb 18 2019

A342090 Numbers with at least one prime power p^e in their prime factorization such that p|e.

Original entry on oeis.org

4, 12, 16, 20, 27, 28, 36, 44, 48, 52, 54, 60, 64, 68, 76, 80, 84, 92, 100, 108, 112, 116, 124, 132, 135, 140, 144, 148, 156, 164, 172, 176, 180, 188, 189, 192, 196, 204, 208, 212, 216, 220, 228, 236, 240, 244, 252, 256, 260, 268, 270, 272, 276, 284, 292, 297, 300
Offset: 1

Views

Author

Amiram Eldar, Feb 27 2021

Keywords

Comments

Numbers with a unitary divisor of the form p^(m*p) where p is a prime and m > 0.
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 1, 19, 188, 1883, 18825, 188244, 1882429, 18824297, 188242957, 1882429628, ...
The asymptotic density of this sequence is 1 - Product_{p prime} 1 - (p - 1)/(p*(p^p - 1)) = 0.18824296270011399086...

Examples

			4 = 2^2 is a term since 2 divides 2.
8 = 2^3 is not a term since 2 does not divide 3.
		

Crossrefs

Subsequence of A013929.
Cf. A072873, A369070 (characteristic function).

Programs

  • Mathematica
    q[n_] := AnyTrue[FactorInteger[n], Divisible[Last[#], First[#]] &]; Select[Range[2, 300], q]

Extensions

Wrong term 1 removed by Amiram Eldar, Jan 16 2024

A227993 Let d(1) < d(2) < ... < d(q) denote the divisors of k. Sequence lists numbers k > 1 such that d(1)/d(2) + d(2)/d(3) + ... + d(q-1)/d(q) is an integer.

Original entry on oeis.org

4, 16, 27, 54, 64, 256, 729, 1024, 1296, 1536, 3125, 4096, 6250, 9375, 12500, 16384, 19683, 30720, 39366, 65536, 262144, 472392, 531441, 823543, 1048576, 1179648, 1647086, 2125764, 3294172, 4194304, 6291456, 6770688, 9765625, 11595672, 14348907, 16777216
Offset: 1

Views

Author

Michel Lagneau, Aug 06 2013

Keywords

Comments

The sequence is infinite because the powers of 4 (A000302) are in the sequence: the divisors of 2^(2m) are {1, 2, 4, 8, ..., 2^(2m)} and Sum_{i=1..q-1} d(i)/d(i+1) = 1/2 + 2/4 + 4/8 + ... + 2^(2m-1)/2^(2m) = 1/2 + 1/2 + ... + 1/2 = 2m.
The powers of 27 (A009971) are also in the sequence.
In the general case, the numbers of the form p^(p*m) where p is prime are in the sequence.

Examples

			54 is in the sequence because the divisors of 54 are {1, 2, 3, 6, 9, 18, 27, 54} and 1/2 + 2/3 + 3/6 + 6/9 + 9/18 + 18/27 + 27/54 = 4 is an integer.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 2000000 do: x:=divisors(n):n1:=nops(x): s:=sum('x[i]/x[i+1]', 'i'=1..n1-1): if s=floor(s)then printf(`%d, `, n):else fi:od:
  • Mathematica
    fQ[n_] := Module[{d = Divisors[n]}, IntegerQ[Total[Most[d]/Rest[d]]]]; t = {}; n = 1; While[Length[t] < 40, n++; If[fQ[n], AppendTo[t, n]]]; t (* T. D. Noe, Aug 06 2013 *)
  • PARI
    is(n)=my(t,s);fordiv(n,d,s+=t/d;t=d);denominator(s)==1 && n>1 \\ Charles R Greathouse IV, Aug 06 2013
    
  • Python
    from sympy import divisors
    from fractions import Fraction
    def ok(n):
        if n < 2: return False
        divs = divisors(n)
        f = sum(Fraction(dn, dd) for dn, dd in zip(divs[:-1], divs[1:]))
        return f.denominator == 1
    print([k for k in range(70000) if ok(k)]) # Michael S. Branicky, Feb 06 2022

A067424 Ninth column of triangle A067417.

Original entry on oeis.org

1, 11, 297, 8019, 216513, 5845851, 157837977, 4261625379, 115063885233, 3106724901291, 83881572334857, 2264802453041139, 61149666232110753, 1651040988266990331, 44578106683208738937, 1203608880446635951299
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Crossrefs

Cf. A067417, A067423 (eighth column), A009971 (powers of 27).

Programs

  • Magma
    [Ceiling(11*(3*9)^(n-1)): n in [0..20]]; // Vincenzo Librandi, Oct 02 2011
  • Mathematica
    CoefficientList[Series[(1-16x)/(1-27x),{x,0,30}],x] (* or *) LinearRecurrence[{27},{1,11},20] (* Harvey P. Dale, Apr 20 2022 *)

Formula

a(n) = A067417(n+8, 8).
a(n) = 11*(3*9)^(n-1), n >= 1, a(0)=1.
G.f.: (1-16*x)/(1-27*x).
E.g.f.: (16 + 11*exp(27*x))/27. - Stefano Spezia, Sep 30 2022

A218730 a(n) = (27^n - 1)/26.

Original entry on oeis.org

0, 1, 28, 757, 20440, 551881, 14900788, 402321277, 10862674480, 293292210961, 7918889695948, 213810021790597, 5772870588346120, 155867505885345241, 4208422658904321508, 113627411790416680717, 3067940118341250379360, 82834383195213760242721, 2236528346270771526553468
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 27 (A009971); q-integers for q=27.

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 28*Self(n-1)-27*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
    
  • Mathematica
    LinearRecurrence[{28, -27}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
  • Maxima
    A218730(n):=(27^n-1)/26$
    makelist(A218730(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
  • PARI
    a(n)=27^n\26
    

Formula

G.f.: x/((1-x)*(1-27*x)). - Vincenzo Librandi, Nov 07 2012
a(n) = floor(27^n/26). - Vincenzo Librandi, Nov 07 2012
a(n) = 28*a(n-1) - 27*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(14*x)*sinh(13*x)/13. - Elmo R. Oliveira, Aug 27 2024

A160104 Numerator of Hermite(n, 5/27).

Original entry on oeis.org

1, 10, -1358, -42740, 5512492, 304384600, -37142220680, -3034178687600, 348731717384080, 38877977386007200, -4187277821653825760, -608713688504523233600, 61068424818638825202880, 11260738942261526747094400, -1044883534589865025424443520
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 10/27, -1358/729, -42740/19683, 5512492/531441..
		

Crossrefs

Cf. A009971 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(10/27)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 12 2018
  • Mathematica
    Numerator[Table[HermiteH[n, 5/27], {n, 0, 30}]] (* or *) Table[27^n* HermiteH[n, 5/27], {n,0,30}] (* G. C. Greubel, Jul 12 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,5/27)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jul 12 2018: (Start)
a(n) = 27^n * Hermite(n, 5/27).
E.g.f.: exp(10*x - 729*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(10/27)^(n-2*k)/(k!*(n-2*k)!)). (End)

A089683 a(n) = 3^(4*n).

Original entry on oeis.org

81, 6561, 531441, 43046721, 3486784401, 282429536481, 22876792454961, 1853020188851841, 150094635296999121, 12157665459056928801, 984770902183611232881, 79766443076872509863361, 6461081889226673298932241, 523347633027360537213511521, 42391158275216203514294433201
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jan 05 2004

Keywords

Crossrefs

Programs

  • Mathematica
    3^(4*Range[20]) (* or *) NestList[81#&,81,20] (* Harvey P. Dale, Apr 09 2012 *)
  • PARI
    my(x='x+O('x^16)); Vec(-81*x/(81*x-1)) \\ Elmo R. Oliveira, Jul 09 2025

Formula

a(n) = 81^n.
G.f.: 81*x/(1-81*x). - Philippe Deléham, Nov 25 2008
From Elmo R. Oliveira, Jul 09 2025: (Start)
E.g.f.: exp(81*x) - 1.
a(n) = 81*a(n-1) for n > 1.
a(n) = A001019(n)^2 = A000244(A008586(n)). (End)

Extensions

More terms from Harvey P. Dale, Apr 09 2012

A160087 Numerator of Hermite(n, 1/27).

Original entry on oeis.org

1, 2, -1454, -8740, 6342316, 63656312, -46108171016, -649081759408, 469281829870480, 8509453301475872, -6140897264957486816, -136349623665433187392, 98215011088057307180224, 2582003037826533660970880, -1856403314087385132972023936
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 2/27, -1454/729, -8740/19683, 6342316/531441..
		

Crossrefs

Cf. A009971 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(2/27)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 23 2018
  • Mathematica
    Table[27^n*HermiteH[n, 1/27], {n, 0, 30}] (* G. C. Greubel, Sep 23 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 1/27)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(2*x - 729*x^2))) \\ G. C. Greubel, Sep 23 2018
    

Formula

From G. C. Greubel, Sep 23 2018: (Start)
a(n) = 27^n * Hermite(n, 1/27).
E.g.f.: exp(2*x - 729*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/27)^(n-2*k)/(k!*(n-2*k)!)). (End)

A160088 Numerator of Hermite(n, 2/27).

Original entry on oeis.org

1, 4, -1442, -17432, 6237580, 126613744, -44965503224, -1287479045408, 453768009722512, 16832227624528960, -5887014913080686624, -268961938417954983296, 93340097422316232142528, 5079118464249805316316928, -1748851732685582642764208000
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 4/27, -1442/729, -17432/19683, 6237580/531441...
		

Crossrefs

Cf. A009971 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(4/27)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 23 2018
  • Mathematica
    Numerator[HermiteH[Range[0,20],2/27]] (* Harvey P. Dale, Mar 26 2016 *)
    Table[27^n*HermiteH[n, 2/27], {n, 0, 30}] (* G. C. Greubel, Sep 23 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 2/27)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(4*x - 729*x^2))) \\ G. C. Greubel, Sep 23 2018
    

Formula

From G. C. Greubel, Sep 23 2018: (Start)
a(n) = 27^n * Hermite(n, 2/27).
E.g.f.: exp(4*x - 729*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/27)^(n-2*k)/(k!*(n-2*k)!)). (End)

A160103 Numerator of Hermite(n, 4/27).

Original entry on oeis.org

1, 8, -1394, -34480, 5821516, 247659488, -40457575736, -2490185806912, 392988531506320, 32189435503872128, -4899280026394954016, -508516209857615258368, 74506523384461350441664, 9493051794744527363939840, -1336252229871124217359780736
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 8/27, -1394/729, -34480/19683, 5821516/531441, ...
		

Crossrefs

Cf. A009971 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(8/27)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 24 2018
  • Mathematica
    Table[27^n*HermiteH[n, 4/27], {n, 0, 30}] (* G. C. Greubel, Sep 24 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 4/27)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(8*x - 729*x^2))) \\ G. C. Greubel, Sep 24 2018
    

Formula

From G. C. Greubel, Sep 24 2018: (Start)
a(n) = 27^n * Hermite(n, 4/27).
E.g.f.: exp(8*x - 729*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/27)^(n-2*k)/(k!*(n-2*k)!)). (End)
Showing 1-10 of 31 results. Next