A001022 Powers of 13.
1, 13, 169, 2197, 28561, 371293, 4826809, 62748517, 815730721, 10604499373, 137858491849, 1792160394037, 23298085122481, 302875106592253, 3937376385699289, 51185893014090757, 665416609183179841, 8650415919381337933, 112455406951957393129, 1461920290375446110677, 19004963774880799438801
Offset: 0
Examples
For the fifth formula: a(7) = 1*1 + 12*7 + 144*21 + 1728*35 + 20736*35 + 248832*21 + 2985984*7 + 35831808*1 = 62748517. - _Bruno Berselli_, Aug 06 2013
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 277
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de Séries Génératrices et Quelques Conjectures, Dissertation, Université du Québec à Montréal, 1992.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Index entries for linear recurrences with constant coefficients, signature (13).
Crossrefs
Cf. A001021.
Programs
-
Magma
[13^n: n in [0..100]]; // Vincenzo Librandi, Nov 21 2010
-
Maple
A001022:=-1/(-1+13*z); # Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[13^n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *) 13^Range[0,20] (* Harvey P. Dale, Jun 16 2024 *)
-
Maxima
A001022(n):=13^n$ makelist(A001022(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
first(n)=powers(13,n) \\ Charles R Greathouse IV, Jun 17 2021
Formula
G.f.: 1/(1-13*x).
E.g.f.: exp(13*x).
a(n) = 13^n. - Vincenzo Librandi, Nov 21 2010
a(n) = 13*a(n-1) n > 0, a(0)=1. - Vincenzo Librandi, Nov 21 2010
a(n) = Sum_{k=0..n} A001021(k)*binomial(n,k). It is well known that Sum_{k=0..n} (h-1)^k*binomial(n,k) = h^n. - Bruno Berselli, Aug 06 2013
Extensions
More terms from James Sellers, Sep 19 2000
Comments