A001027 Powers of 18.
1, 18, 324, 5832, 104976, 1889568, 34012224, 612220032, 11019960576, 198359290368, 3570467226624, 64268410079232, 1156831381426176, 20822964865671168, 374813367582081024, 6746640616477458432, 121439531096594251776, 2185911559738696531968, 39346408075296537575424, 708235345355337676357632, 12748236216396078174437376
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 282
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Index entries for linear recurrences with constant coefficients, signature (18).
Programs
-
Magma
[ 18^n: n in [0..20] ]; // Vincenzo Librandi, Nov 21 2010
-
Maple
A001027:=-1/(-1+18*z); # Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[18^n,{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
-
PARI
a(n)=18^n \\ Charles R Greathouse IV, Sep 28 2015
-
Sage
[18**n for n in range(20)] # F. Chapoton, Feb 23 2020
-
Sage
[lucas_number1(n,18,0) for n in range(1, 17)] # Zerinvary Lajos, Apr 29 2009
Formula
G.f.: 1/(1-18x), e.g.f.: exp(18x).
a(n) = 18^n; a(n) = 18*a(n-1) with a(0)=1. - Vincenzo Librandi, Nov 21 2010
Extensions
More terms from James Sellers, Sep 19 2000
Comments