cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A060221 Number of orbits of length n under the full 18-shift (whose periodic points are counted by A001027).

Original entry on oeis.org

18, 153, 1938, 26163, 377910, 5667681, 87460002, 1377481950, 22039920504, 357046533675, 5842582734474, 96402612275775, 1601766528128550, 26772383354990049, 449776041098370870, 7589970692848393200, 128583032925805678350, 2185911559727674682148, 37275544492386193492506
Offset: 1

Views

Author

Thomas Ward, Mar 21 2001

Keywords

Comments

Number of Lyndon words (aperiodic necklaces) with n beads of 18 colors. - Andrew Howroyd, Dec 10 2017

Examples

			a(2)=153 since there are 324 points of period 2 in the full 18-shift and 18 fixed points, so there must be (324-18)/2 = 153 orbits of length 2.
		

Crossrefs

Column 18 of A074650.

Programs

  • Magma
    A060221:= func< n | (1/n)*(&+[MoebiusMu(d)*(18)^Floor(n/d): d in Divisors(n)]) >;
    [A060221(n): n in [1..40]]; // G. C. Greubel, Sep 13 2024
    
  • Mathematica
    A060221[n_]:= DivisorSum[n, (18)^(n/#)*MoebiusMu[#] &]/n;
    Table[A060221[n], {n, 40}] (* G. C. Greubel, Sep 13 2024 *)
  • PARI
    a001027(n) = 18^n;
    a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001027(n/d)); \\ Michel Marcus, Sep 11 2017
    
  • SageMath
    def A060221(n): return (1/n)*sum(moebius(k)*(18)^(n/k) for k in (1..n) if (k).divides(n))
    [A060221(n) for n in range(1,41)] # G. C. Greubel, Sep 13 2024

Formula

a(n) = (1/n)* Sum_{d|n} mu(d)*A001027(n/d).
G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 18*x^k))/k. - Ilya Gutkovskiy, May 20 2019

Extensions

More terms from Michel Marcus, Sep 11 2017

A218721 a(n) = (18^n-1)/17.

Original entry on oeis.org

0, 1, 19, 343, 6175, 111151, 2000719, 36012943, 648232975, 11668193551, 210027483919, 3780494710543, 68048904789775, 1224880286215951, 22047845151887119, 396861212733968143, 7143501829211426575, 128583032925805678351
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 18 (A001027), q-integers for q=18: diagonal k=1 in triangle A022182.
Partial sums are in A014901. Also, the sequence is related to A014935 by A014935(n) = n*a(n) - Sum_{i=0..n-1} a(i), for n>0. - Bruno Berselli, Nov 06 2012
From Bernard Schott, May 06 2017: (Start)
Except for 0, 1 and 19, all terms are Brazilian repunits numbers in base 18, and so belong to A125134. From n = 3 to n = 8286, all terms are composite. See link "Generalized repunit primes".
As explained in the extensions of A128164, a(25667) = (18^25667 - 1)/17 would be (is) the smallest prime in base 18. (End)

Examples

			a(3) = (18^3 - 1)/17 = 343 = 7 * 49; a(6) = (18^6 - 1)/17 = 2000719 = 931 * 2149. - _Bernard Schott_, May 01 2017
		

Crossrefs

Programs

Formula

a(n) = floor(18^n/17).
G.f.: x/((1-x)*(1-18*x)). - Bruno Berselli, Nov 06 2012
a(n) = 19*a(n-1) - 18*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(x)*(exp(17*x) - 1)/17. - Stefano Spezia, Mar 11 2023

A219692 a(n) = Sum_{j=0..floor(n/3)} (-1)^j C(n,j) * C(2j,j) * C(2n-2j,n-j) * (C(2n-3j-1,n) + C(2n-3j,n)).

Original entry on oeis.org

2, 6, 54, 564, 6390, 76356, 948276, 12132504, 158984694, 2124923460, 28877309604, 398046897144, 5554209125556, 78328566695736, 1114923122685720, 15999482238880464, 231253045986317814, 3363838379489630916
Offset: 0

Views

Author

Jason Kimberley, Nov 25 2012

Keywords

Comments

This sequence is s_18 in Cooper's paper.
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Every prime eventually divides some term of this sequence. - Amita Malik, Aug 20 2017

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Magma
    s_18 := func where C is Binomial;
    
  • Mathematica
    Table[Sum[(-1)^j*Binomial[n,j]*Binomial[2j,j]*Binomial[2n-2j, n-j]* (Binomial[2n-3j-1,n] +Binomial[2n-3j,n]), {j,0,Floor[n/3]}], {n,0,20}] (* G. C. Greubel, Oct 24 2017 *)
  • PARI
    {a(n) = sum(j=0,floor(n/3), (-1)^j*binomial(n,j)*binomial(2*j,j)* binomial(2*n-2*j,n-j)*(binomial(2*n-3*j-1,n) +binomial(2*n-3*j,n)))}; \\ G. C. Greubel, Apr 02 2019
    
  • Sage
    [sum((-1)^j*binomial(n,j)*binomial(2*j,j)*binomial(2*n-2*j,n-j)* (binomial(2*n-3*j-1,n)+binomial(2*n-3*j,n)) for j in (0..floor(n/3))) for n in (0..20)] # G. C. Greubel, Apr 02 2019

Formula

1/Pi
= 2*3^(-5/2) Sum {k>=0} (n a(n)/18^n) [Cooper, equation (42)]
= 2*3^(-5/2) Sum {k>=0} (n a(n)/A001027(n)).
G.f.: 1+hypergeom([1/8, 3/8],[1],256*x^3/(1-12*x)^2)^2/sqrt(1-12*x). - Mark van Hoeij, May 07 2013
Conjecture D-finite with recurrence: n^3*a(n) -2*(2*n-1)*(7*n^2-7*n+3)*a(n-1) +12*(4*n-5)*(n-1)* (4*n-3)*a(n-2)=0. - R. J. Mathar, Jun 14 2016
a(n) ~ 3 * 2^(4*n + 1/2) / (Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2023

A003992 Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 8, 1, 0, 1, 5, 16, 27, 16, 1, 0, 1, 6, 25, 64, 81, 32, 1, 0, 1, 7, 36, 125, 256, 243, 64, 1, 0, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 0, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 0, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 0
Offset: 0

Views

Author

Keywords

Comments

If the array is transposed, T(n,k) is the number of oriented rows of n colors using up to k different colors. The formula would be T(n,k) = [n==0] + [n>0]*k^n. The generating function for column k would be 1/(1-k*x). For T(3,2)=8, the rows are AAA, AAB, ABA, ABB, BAA, BAB, BBA, and BBB. - Robert A. Russell, Nov 08 2018
T(n,k) is the number of multichains of length n from {} to [k] in the Boolean lattice B_k. - Geoffrey Critzer, Apr 03 2020

Examples

			Rows begin:
[1, 0,  0,   0,    0,     0,      0,      0, ...],
[1, 1,  1,   1,    1,     1,      1,      1, ...],
[1, 2,  4,   8,   16,    32,     64,    128, ...],
[1, 3,  9,  27,   81,   243,    729,   2187, ...],
[1, 4, 16,  64,  256,  1024,   4096,  16384, ...],
[1, 5, 25, 125,  625,  3125,  15625,  78125, ...],
[1, 6, 36, 216, 1296,  7776,  46656, 279936, ...],
[1, 7, 49, 343, 2401, 16807, 117649, 823543, ...], ...
		

Crossrefs

Main diagonal is A000312. Other diagonals include A000169, A007778, A000272, A008788. Antidiagonal sums are in A026898.
Cf. A099555.
Transpose is A004248. See A051128, A095884, A009999 for other versions.
Cf. A277504 (unoriented), A293500 (chiral).

Programs

  • Magma
    [[(n-k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[If[k == 0, 1, (n - k)^k], {n, 0, 11}, {k, 0, n}]//Flatten
  • PARI
    T(n,k) = (n-k)^k \\ Charles R Greathouse IV, Feb 07 2017
    

Formula

E.g.f.: Sum T(n,k)*x^n*y^k/k! = 1/(1-x*exp(y)). - Paul D. Hanna, Oct 22 2004
E.g.f.: Sum T(n,k)*x^n/n!*y^k/k! = e^(x*e^y). - Franklin T. Adams-Watters, Jun 23 2006

Extensions

More terms from David W. Wilson
Edited by Paul D. Hanna, Oct 22 2004

A009980 Powers of 36.

Original entry on oeis.org

1, 36, 1296, 46656, 1679616, 60466176, 2176782336, 78364164096, 2821109907456, 101559956668416, 3656158440062976, 131621703842267136, 4738381338321616896, 170581728179578208256, 6140942214464815497216, 221073919720733357899776, 7958661109946400884391936
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 36), L(1, 36), P(1, 36), T(1, 36). Essentially same as Pisot sequences E(36, 1296), L(36, 1296), P(36, 1296), T(36, 1296). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 36-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
See David Applegate's comment in A000244 from Feb 20 2017 for a proof of Janjic's assertion. - Alonso del Arte, Sep 03 2017

Crossrefs

Programs

Formula

G.f.: 1/(1-36*x). - Philippe Deléham, Nov 24 2008
a(n) = 36^n; a(n) = 36*a(n-1) for n > 0, a(0) = 1. - Vincenzo Librandi, Nov 21 2010
From Elmo R. Oliveira, Jul 10 2025: (Start)
E.g.f.: exp(36*x).
a(n) = A000079(n)*A001027(n) = A000400(A005843(n)). (End)

A125818 a(n) = ((1 + 3*sqrt(2))^n + (1 - 3*sqrt(2))^n)/2.

Original entry on oeis.org

1, 1, 19, 55, 433, 1801, 10963, 52543, 291457, 1476145, 7907059, 40908583, 216237169, 1127920249, 5931872371, 31038388975, 162918608257, 853489829089, 4476595998547, 23462519091607, 123027170158513, 644917164874345, 3381296222443411, 17726184247750687
Offset: 1

Views

Author

Artur Jasinski, Dec 10 2006

Keywords

Comments

Binomial transform of [1, 0, 18, 0, 324, 0, 5832, 0, 104976, 0, ...] =: powers of 18 (A001027) with interpolated zeros. - Philippe Deléham, Dec 02 2008
a(n-1) is the number of compositions of n when there are 1 type of 1 and 18 types of other natural numbers. - Milan Janjic, Aug 13 2010

Crossrefs

Cf. A125817.

Programs

  • GAP
    a:=[1,1];; for n in [3..30] do a[n]:=2*a[n-1]+17*a[n-2]; od; a; # G. C. Greubel, Aug 03 2019
  • Magma
    I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) +17*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 03 2019
    
  • Mathematica
    Expand[Table[((1+3*Sqrt[2])^n +(1-3*Sqrt[2])^n)/2, {n,0,30}]]
    (* alternate program *)
    LinearRecurrence[{2, 17}, {1, 1}, 30] (* T. D. Noe, Mar 28 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1-2*x-17*x^2)) \\ G. C. Greubel, Aug 03 2019
    
  • Sage
    ((1-x)/(1-2*x-17*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
    

Formula

From Philippe Deléham, Dec 12 2006: (Start)
a(n) = 2*a(n-1) + 17*a(n-2), with a(0)=a(1)=1.
G.f.: (1-x)/(1-2*x-17*x^2). (End)
a(n) = Sum_{k=0..n} A098158(n,k)*18^(n-k). - Philippe Deléham, Dec 26 2007
If p[1]=1, and p[i]=18, (i>1), and if A is Hessenberg matrix of order n If p[1]=1, and p[i]=18, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n+1)=det A. - Milan Janjic, Apr 29 2010

A067421 Sixth column of triangle A067417.

Original entry on oeis.org

1, 8, 144, 2592, 46656, 839808, 15116544, 272097792, 4897760256, 88159684608, 1586874322944, 28563737812992, 514147280633856, 9254651051409408, 166583718925369344, 2998506940656648192
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Crossrefs

Cf. A067420 (fifth column), A067422 (seventh column), A001027 (powers of 18).

Programs

Formula

a(n) = A067417(n+5, 5).
a(n) = 8*(3*6)^(n-1), n >= 1, a(0)=1.
G.f.: (1-10*x)/(1-18*x).

A013723 a(n) = 18^(2*n + 1).

Original entry on oeis.org

18, 5832, 1889568, 612220032, 198359290368, 64268410079232, 20822964865671168, 6746640616477458432, 2185911559738696531968, 708235345355337676357632, 229468251895129407139872768
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A001027 (18^n).

Programs

Formula

From Philippe Deléham, Nov 28 2008: (Start)
a(n) = 324*a(n-1); a(0)=18.
G.f.: 18/(1-324*x). (End)

A180703 Smallest power of 18 that begins with n.

Original entry on oeis.org

1, 20822964865671168, 324, 4130428534112329328517709824, 5832, 612220032, 708235345355337676357632, 819308872942260126404286866009182175232, 9028751479390699717312017900815782025058563653632, 104976, 11019960576
Offset: 1

Views

Author

Daniel Mondot, Sep 18 2010

Keywords

Crossrefs

A038299 Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*9^j.

Original entry on oeis.org

1, 9, 9, 81, 162, 81, 729, 2187, 2187, 729, 6561, 26244, 39366, 26244, 6561, 59049, 295245, 590490, 590490, 295245, 59049, 531441, 3188646, 7971615, 10628820, 7971615, 3188646, 531441, 4782969, 33480783, 100442349, 167403915
Offset: 0

Views

Author

Keywords

References

  • B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.

Formula

Row sums: sum_{j=0..i} T(i,j) = A001027(i). [From R. J. Mathar, Mar 30 2009]
Showing 1-10 of 22 results. Next