cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001084 a(n) = 20*a(n-1) - a(n-2) with a(0) = 0, a(1) = 3.

Original entry on oeis.org

0, 3, 60, 1197, 23880, 476403, 9504180, 189607197, 3782639760, 75463188003, 1505481120300, 30034159217997, 599177703239640, 11953519905574803, 238471220408256420, 4757470888259553597, 94910946544782815520, 1893461460007396756803, 37774318253603152320540
Offset: 0

Views

Author

Keywords

Comments

Also 11*x^2+1 is a square. n=11 in PARI script below. - Cino Hilliard, Mar 08 2003
This sequence gives the values of y in solutions of the Diophantine equation x^2 - 11*y^2 = 1; the corresponding x values are in A001085. - Vincenzo Librandi, Nov 12 2010 [edited by Jon E. Schoenfield, May 04 2014]

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • "Questions D'Arithmetique", Question 3686, Solution by H.L. Mennessier, Mathesis, 65(4, Supplement) 1956, pp. 1-12.

Crossrefs

Equals 3 * A075843.

Programs

  • Magma
    I:=[0,3]; [n le 2 select I[n] else 20*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
    
  • Maple
    A001084:=3*z/(1-20*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{20, -1}, {0, 3}, 20] (* T. D. Noe, Dec 19 2011 *)
    CoefficientList[Series[3*x/(1 - 20*x + x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
    Table[3 ChebyshevU[-1 + n, 10], {n, 0, 18}] (* Herbert Kociemba, Jun 05 2022 *)
  • PARI
    nxsqp1(m,n) = { for(x=1,m, y = n*x*x+1; if(issquare(y),print1(x" ")) ) }
    
  • PARI
    x='x+O('x^30); concat([0], Vec(3*x/(1 - 20*x + x^2))) \\ G. C. Greubel, Dec 20 2017

Formula

Limit_{n->oo} a(n)/a(n-1) = 10 + 3*sqrt(11); for all n in the sequence, 11*n^2 + 1 is a perfect square. - Gregory V. Richardson, Oct 06 2002
a(n) = ((10 + 3*sqrt(11))^n - (10 - 3*sqrt(11))^n) / (2*sqrt(11)). - Gregory V. Richardson, Oct 06 2002
From Mohamed Bouhamida, Sep 20 2006: (Start)
a(n) = 19*(a(n-1) + a(n-2)) - a(n-3).
a(n) = 21*(a(n-1) - a(n-2)) + a(n-3). (End)
G.f.: 3*x/(1 - 20*x + x^2). - G. C. Greubel, Dec 20 2017
E.g.f.: exp(10*x)*sinh(3*sqrt(11)*x)/sqrt(11). - Stefano Spezia, Aug 16 2024