A001181 Number of Baxter permutations of length n (also called Baxter numbers).
1, 1, 2, 6, 22, 92, 422, 2074, 10754, 58202, 326240, 1882960, 11140560, 67329992, 414499438, 2593341586, 16458756586, 105791986682, 687782586844, 4517543071924, 29949238543316, 200234184620736, 1349097425104912, 9154276618636016, 62522506583844272
Offset: 0
Examples
G.f. = x + 2*x^2 + 6*x^3 + 22*x^4 + 92*x^5 + 422*x^6 + 2074*x^7 + ... a(4) = 22 since all permutations of length 4 are Baxter except 2413 and 3142. - _Michael Somos_, Jul 19 2002
References
- Arthur T. Benjamin and Naiomi T. Cameron, Counting on determinants, American Mathematical Monthly, 112.6 (2005): 481-492.
- W. M. Boyce, Generation of a class of permutations associated with commuting functions, Math. Algorithms, 2 (1967), 19-26.
- William M. Boyce, Commuting functions with no common fixed point, Transactions of the American Mathematical Society 137 (1969): 77-92.
- T. Y. Chow, Review of "Bonichon, Nicolas; Bousquet-Mélou, Mireille; Fusy, Éric; Baxter permutations and plane bipolar orientations. Sem. Lothar. Combin. 61A (2009/10), Art. B61Ah, 29 pp.", MathSciNet Review MR2734180 (2011m:05023).
- S. Dulucq and O. Guibert, Baxter permutations, Proceedings of the 7th Conference on Formal Power Series and Algebraic Combinatorics (Noisy-le-Grand, 1995).
- J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), 1995, pp. 5849ff. See (60) and (63).
- Iwan Jensen, Three friendly walkers, Journal of Physics A: Mathematical and Theoretical, Volume 50:2 (2017), #24003, 14 pages; https://doi.org/10.1088/1751-8121/50/2/024003. See (1), (2).
- S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. See p. 399, Table A.7.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.55.
- Doron Zeilberger, The method of creative telescoping, J. Symb. Comput. 11.3 (1991): 195-204. See Section 7.8.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1119 (first 101 terms from T. D. Noe)
- E. Ackerman et al., On the number of rectangular partitions, SODA '04, 2004.
- A. Asinowski, G. Barequet, M. Bousquet-Mélou, T. Mansour, and R. Pinter, Orders induced by segments in floorplans and (2-14-3,3-41-2)-avoiding permutations, Electronic Journal of Combinatorics, 20:2 (2013), Paper P35; also arXiv preprint arXiv:1011.1889 [math.CO], 2010-2012.
- Andrei Asinowski, Jean Cardinal, Stefan Felsner, and Éric Fusy, Combinatorics of rectangulations: Old and new bijections, arXiv:2402.01483 [math.CO], 2024. See p. 10.
- Jean-Christophe Aval, Adrien Boussicault, Mathilde Bouvel, Olivier Guibert, and Matteo Silimbani, Baxter Tree-like Tableaux, arXiv:2108.06212 [math.CO], 2021.
- N. R. Beaton, M. Bouvel, V. Guerrini, and S. Rinaldi, Slicings of parallelogram polyominoes, or how Baxter and Schroeder can be reconciled, arXiv preprint arXiv:1511.04864 [math.CO], 2015.
- Nicolas Bonichon, Mireille Bousquet-Mélou, and Éric Fusy, Baxter permutations and plane bipolar orientations, Sem. Lothar. Combin. 61A (2009/10), Art. B61Ah, 29 pp.
- Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
- Alin Bostan, Jordan Tirrell, Bruce W. Westbury, and Yi Zhang, On sequences associated to the invariant theory of rank two simple Lie algebras, arXiv:1911.10288 [math.CO], 2019.
- Alin Bostan, Jordan Tirrell, Bruce W. Westbury, and Yi Zhang, On some combinatorial sequences associated to invariant theory, arXiv:2110.13753 [math.CO], 2021.
- F. Bousquet-Mélou, Four classes of pattern-avoiding permutations under one roof: generating trees with two labels, Electron. J. Combin. 9 (2002/03), no. 2, Research paper 19, 31 pp.
- Mathilde Bouvel, Veronica Guerrini, Andrew Rechnitzer, and Simone Rinaldi, Semi-Baxter and strong-Baxter: two relatives of the Baxter sequence, arXiv:1702.04529 [math.CO], 2017.
- W. M. Boyce, Generation of a class of permutations associated with commuting functions, 1967; annotated and corrected scanned copy.
- W. M. Boyce, Correction to page 25 (Part 1)
- W. M. Boyce, Correction to Page 25 (Part 2)
- W. M. Boyce, Baxter Permutations and Functional Composition, Houston Journal of Mathematics, Volume 7, No. 2, 1981
- S. Burrill, S. Melczer, and M. Mishna, A Baxter class of a different kind, and other bijective results using tableau sequences ending with a row shape, arXiv preprint arXiv:1411.6606 [math.CO], 2014-2015.
- H. Canary, Aztec diamonds and Baxter permutations, arXiv:math/0309135 [math.CO], 2003-2004.
- Jean Cardinal and Vincent Pilaud, Rectangulotopes, arXiv:2404.17349 [math.CO], 2024. See p. 14.
- G. Chatel and V. Pilaud, Cambrian Hopf Algebras, arXiv:1411.3704 [math.CO], 2014-2015. and [DOI]
- T. Y. Chow, H. Eriksson, and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- F. R. K. Chung, R. L. Graham, V. E. Hoggatt Jr., and M. Kleiman, The number of Baxter permutations J. Combin. Theory Ser. A 24 (1978), no. 3, 382-394.
- J. Cranch, Representing and Enumerating Two-Dimensional Pasting Diagrams, 2014.
- CombOS - Combinatorial Object Server, Generate diagonal rectangulations
- Colin Defant, Stack-Sorting Preimages of Permutation Classes, arXiv:1809.03123 [math.CO], 2018.
- Anand Deopurkar, Eduard Duryev, and Anand Patel, Ramification divisors of general projections, arXiv:1901.01513 [math.AG], 2019.
- Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019).
- S. Dulucq and O. Guibert, Permutations de Baxter, Séminaire Lotharingien de Combinatoire, B33c (1994), 9 pp.
- S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
- S. Dulucq and O. Guibert, Baxter permutations, Discrete Math. 180 (1998), no. 1-3, 143--156. MR1603713 (99c:05004).
- Hanqian Fang, Candice X. T. Zhang, and James J. Y. Zhao, Analytic properties arising from the Baxter numbers, arXiv:2505.05873 [math.CO], 2025. See pp. 2, 9.
- Stefan Felsner, Eric Fusy, Marc Noy, and David Orden, Bijections for Baxter families and related objects, J. Combin. Theory Ser. A, 118(3):993-1020, 2011.
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
- D. C. Fielder and C. O. Alford, On a conjecture by Hoggatt with extensions to Hoggatt sums and Hoggatt triangles, Fib. Quart., 27 (1989), 160-168.
- P. Gawrychowski and P. K. Nicholson, Optimal Encodings for Range Top-k, Selection, and Min-Max, arXiv:1411.6581 [cs.DS], 2014-2015.
- P. Gawrychowski and P. K. Nicholson, Optimal Encodings for Range Top-k, Selection, and Min-Max, in Automata, Languages, and Programming, Volume 9134 of the series Lecture Notes in Computer Science, 2015, pp. 593-604.
- S. Giraudo, Algebraic and combinatorial structures on Baxter permutations, DMTCS proc. AO, FPSAC 2011 Rykjavik, (2011) 387-398.
- S. Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees, arXiv:1204.4776 [math.CO], 2012.
- S. Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees, Journal of Algebra, Volume 360, 15 June 2012, Pages 115-157.
- O. Guibert and S. Linusson, Doubly alternating Baxter permutations are Catalan, Discrete Math., 217 (2000), 157-166.
- Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, and Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
- V. E. Hoggatt, Jr., Letter to N. J. A. Sloane, Apr 1977
- Don Knuth, Twintrees, Baxter Permutations, and Floorplans, Christmas Lecture, Stanford 2022 (YouTube video).
- Laszlo Kozma and T. Saranurak, Binary search trees and rectangulations, arXiv preprint arXiv:1603.08151 [cs.DS], 2016.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016 [Section 2.25].
- Arturo Merino and Torsten Mütze, Combinatorial generation via permutation languages. III. Rectangulations, arXiv:2103.09333 [math.CO], 2021.
- A. Peder and M. Tombak, Finding the description of structure by counting method: a case study, SOFSEM 2011, LNCS 6543 (2011) 455-466 doi:10.1007/978-3-642-18381-2_38.
- Vincent Pilaud, Brick polytopes, lattice quotients, and Hopf algebras, arXiv:1505.07665 [math.CO], 2015.
- V. Reiner, D. Stanton, and V. Welker, The Charney-Davis quantity for certain graded posets, Sem. Lothar. Combin. 50 (2003/04), Art. B50c, 13 pp.
- Jannik Silvanus, Improved Cardinality Bounds for Rectangle Packing Representations, Doctoral Dissertation, University of Bonn (Rheinische Friedrich Wilhelms Universität, Germany 2019).
- N. J. A. Sloane, Three vicious walkers of lengths 1, 2, and 3
- Wikipedia, Baxter permutation
Programs
-
GAP
Concatenation([1], List([1..30], n-> 2*Sum([1..n], k-> Binomial(n+1,k-1)* Binomial(n+1,k)*Binomial(n+1, k+1) )/(n*(n+1)^2) )); # G. C. Greubel, Jul 24 2019
-
Haskell
a001181 0 = 1 a001181 n = (sum $ map (\k -> product $ map (a007318 (n+1)) [k-1..k+1]) [1..n]) `div` (a006002 n) -- Reinhard Zumkeller, Oct 23 2011
-
Magma
[1] cat [2*(&+[Binomial(n+1,k-1)*Binomial(n+1,k)* Binomial(n+1, k+1): k in [1..n]])/(n*(n+1)^2): n in [1..30]]; // G. C. Greubel, Jul 24 2019
-
Maple
C := binomial; A001181 := proc(n) local k; add(C(n+1, k-1)*C(n+1, k)* C(n+1, k+1)/ (C(n+1, 1)*C(n+1, 2)), k = 1..n); end; # second Maple program: a:= proc(n) option remember; `if`(n<2, 1, ((7*n^2+7*n-2)*a(n-1)+8*(n-1)*(n-2)*a(n-2))/((n+2)*(n+3))) end: seq(a(n), n=0..24); # Alois P. Heinz, Jul 29 2022
-
Mathematica
A001181[n_] := HypergeometricPFQ[{-1-n, -n, 1-n}, {2, 3}, -1] (* Richard L. Ollerton, Sep 13 2006 *) a[0]=1; a[1]=1; a[n_] := a[n] = ((7n^2+7n-2)*a[n-1] + 8(n-1)(n-2)*a[n-2]) / ((n+2)(n+3)); Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 28 2015, from 3rd formula *)
-
PARI
{a(n) = if( n<0, 0, sum( k=1, n, binomial(n+1, k-1) * binomial(n+1, k) * binomial(n+1, k+1) / (binomial(n+1, 1) * binomial(n+1, 2))))}; /* Michael Somos, Jul 19 2002 */
-
Python
from sympy import binomial as C def a(n): return sum([(C(n + 1, k - 1)*C(n + 1, k)*C(n + 1, k + 1))/(C(n + 1, 1) * C(n + 1, 2)) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 25 2017
-
Sage
[1]+[2*sum(binomial(n+1,k-1)*binomial(n+1,k)*binomial(n+1, k+1) for k in (1..n))/(n*(n+1)^2) for n in (1..30)] # G. C. Greubel, Jul 24 2019 print([BaxterPermutations(n).cardinality() for n in range(25)]) # Peter Luschny, May 21 2024
Formula
a(n) = Sum_{k=1..n} C(n+1,k-1) * C(n+1,k) * C(n+1,k+1) / (C(n+1,1) * C(n+1,2)).
(n + 1)*(n + 2)*(n + 3)*(3*n - 2)*a(n) = 2*(n + 1)*(9*n^3 + 3*n^2 - 4*n + 4)*a(n - 1) + (3*n - 1)*(n - 2)*(15*n^2 - 5*n - 14)*a(n - 2) + 8*(3*n + 1)*(n - 2)^2*(n - 3)*a(n - 3), if n>1. [Stanley, 1999] - Michael Somos, Jul 19 2002
From Richard L. Ollerton, Sep 13 2006: (Start)
D-finite with recurrence (n + 2)*(n + 3)*a(n) = (7*n^2 + 7*n - 2)*a(n-1) + 8*(n - 1)*(n - 2)*a(n-2), a(0) = a(1) = 1.
a(n) = hypergeom([-1 - n, -n, 1 - n], [2, 3], -1). (End)
[The coefficients of the polynomials p(n, x) = hypergeom([-1-n, -n, 1-n], [2, 3], -x) are given by the triangular form of A056939. - Peter Luschny, Dec 28 2022]
G.f.: -1 + (1/(3*x^2)) * (x-1 + (1-2*x)*hypergeom([-2/3, 2/3],[1],27*x^2/(1-2*x)^3) - (8*x^3-11*x^2-x)*hypergeom([1/3, 2/3],[2],27*x^2/(1-2*x)^3)/(1-2*x)^2 ). - Mark van Hoeij, Oct 23 2011
a(n) ~ 2^(3*n+5)/(Pi*sqrt(3)*n^4). - Vaclav Kotesovec, Oct 01 2012
0 = +a(n)*(+a(n+1)*(+512*a(n+2) + 2624*a(n+3) - 960*a(n+4)) +a(n+2)*(-1216*a(n+2) + 3368*a(n+3) - 1560*a(n+4)) + a(n+3)*(+600*a(n+3) + 120*a(n+4))) + a(n+1)*(+a(n+1)*(-64*a(n+2) - 1288*a(n+3) + 600*a(n+4)) +a(n+2)*(-136*a(n+2) + 295*a(n+3) - 421*a(n+4)) +a(n+3)*(+161*a(n+3) + 41*a(n+4))) + a(n+2)*(+a(n+2)*(+72*a(n+2) + 17*a(n+3) - 19*a(n+4)) + a(n+3)*(-a(n+3) - a(n+4))) if n>=0. - Michael Somos, Mar 09 2017
G.f.: ((x^3+3*x^2+3*x+1)/(1-8*x)^(3/4)*hypergeom([1/4, 5/4],[2],64*x*(1+x)^3/(8*x-1)^3) - 1 + x)/(3*x^2). - Mark van Hoeij, Nov 05 2023
Extensions
Changed initial term to a(0) = 1 (it was a(0) = 0, but there were compelling reasons to change it). - N. J. A. Sloane, Sep 14 2021
Comments