cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A046051 Number of prime factors of Mersenne number M(n) = 2^n - 1 (counted with multiplicity).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 2, 5, 1, 3, 3, 4, 1, 6, 1, 6, 4, 4, 2, 7, 3, 3, 3, 6, 3, 7, 1, 5, 4, 3, 4, 10, 2, 3, 4, 8, 2, 8, 3, 7, 6, 4, 3, 10, 2, 7, 5, 7, 3, 9, 6, 8, 4, 6, 2, 13, 1, 3, 7, 7, 3, 9, 2, 7, 4, 9, 3, 14, 3, 5, 7, 7, 4, 8, 3, 10, 6, 5, 2, 14, 3, 5, 6, 10, 1, 13, 5, 9, 3, 6, 5, 13, 2, 5, 8
Offset: 1

Views

Author

Keywords

Comments

Length of row n of A001265.

Examples

			a(4) = 2 because 2^4 - 1 = 15 = 3*5.
From _Gus Wiseman_, Jul 04 2019: (Start)
The sequence of Mersenne numbers together with their prime indices begins:
        1: {}
        3: {2}
        7: {4}
       15: {2,3}
       31: {11}
       63: {2,2,4}
      127: {31}
      255: {2,3,7}
      511: {4,21}
     1023: {2,5,11}
     2047: {9,24}
     4095: {2,2,3,4,6}
     8191: {1028}
    16383: {2,14,31}
    32767: {4,11,36}
    65535: {2,3,7,55}
   131071: {12251}
   262143: {2,2,2,4,8,21}
   524287: {43390}
  1048575: {2,3,3,5,11,13}
(End)
		

Crossrefs

bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), A057955 (b=6), A057956 (b=5), A057957 (b=4), A057958 (b=3), this sequence (b=2).

Programs

  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[2^n-1]; n=Length[x]; Sum[Table[x[i][2], {i, n}][j], {j, n}]]
    a[n_Integer] := PrimeOmega[2^n - 1]; Table[a[n], {n,200}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
  • PARI
    a(n)=bigomega(2^n-1) \\ Charles R Greathouse IV, Apr 01 2013

Formula

Mobius transform of A085021. - T. D. Noe, Jun 19 2003
a(n) = A001222(A000225(n)). - Michel Marcus, Jun 06 2019

A060443 Table T(n,k) in which n-th row lists prime factors of 2^n - 1 (n >= 2), without repetition.

Original entry on oeis.org

0, 1, 3, 7, 3, 5, 31, 3, 7, 127, 3, 5, 17, 7, 73, 3, 11, 31, 23, 89, 3, 5, 7, 13, 8191, 3, 43, 127, 7, 31, 151, 3, 5, 17, 257, 131071, 3, 7, 19, 73, 524287, 3, 5, 11, 31, 41, 7, 127, 337, 3, 23, 89, 683, 47, 178481, 3, 5, 7, 13, 17, 241
Offset: 0

Views

Author

Keywords

Comments

For n > 1, the length of row n is A046800(n). - T. D. Noe, Aug 06 2007

Examples

			From _Wolfdieter Lang_, Sep 23 2017: (Start)
The irregular triangle T(n,k) begins for n >= 2:
n\k      1   2    3    4   5
2:       3
3:       7
4:       3   5
5:      31
6:       3   7
7:     127
8:       3   5   17
9:       7  73
10:      3  11   31
11:     23  89
12:      3   5    7   13
13:   8191
14:      3  43  127
15:      7  31  151
16:      3   5   17  257
17: 131071
18:      3   7   19   73
19: 524287
20:      3   5   11   31  41
... (End)
		

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.

Crossrefs

Programs

  • Mathematica
    Array[FactorInteger[2^# - 1][[All, 1]] &, 25, 0] (* Paolo Xausa, Apr 18 2024 *)

A292079 Composite numbers m such that 2^m - 1 has a single prime factor of the form k*m + 1.

Original entry on oeis.org

4, 6, 8, 9, 12, 20, 24, 27, 33, 49, 69, 77, 145, 425, 447, 567
Offset: 1

Views

Author

Michel Marcus, Sep 12 2017

Keywords

Comments

From Thomas Ordowski, Sep 12 2017: (Start)
Composite numbers m such that A182590(m) = 1.
Problem: are there infinitely many such numbers?
Note that this single prime factor p is the only primitive prime factor of 2^m - 1 for all such m except 6, i.e., the multiplicative order of 2 modulo p is m. (End)
After 567, the only numbers < 1200 that may possibly be terms are 961, 1037, 1111, and 1115. - Jon E. Schoenfield, Dec 03 2017
a(17) > 1206. - Amiram Eldar, Apr 01 2021

Crossrefs

Programs

  • Mathematica
    Select[Range@ 150, And[CompositeQ@ #, Function[{m, p}, Total@ Boole@ Map[Divisible[# - 1, m] &, p] == 1] @@ {#, FactorInteger[2^# - 1][[All, 1]]}] &] (* Michael De Vlieger, Dec 06 2017 *)
  • PARI
    lista(nn) = forcomposite(n=1, nn, my(f = factor(2^n-1)); if (sum(k=1, #f~, ((f[k, 1]-1) % n)==0) == 1, print1(n, ", ")));

Extensions

Erroneous terms 841 and 1127 and possible (but unconfirmed, and not necessarily next) term 1037 deleted by Jon E. Schoenfield, Dec 03 2017

A297294 Number of primitive Pythagorean triples (PPTs) that have 2^n-1 as the length of their odd leg where n is the sequence index.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 4, 2, 4, 2, 8, 1, 4, 4, 8, 1, 8, 1, 16, 4, 8, 2, 32, 4, 4, 4, 32, 4, 32, 1, 16, 8, 4, 8, 128, 2, 4, 8, 64, 2, 32, 4, 64, 32, 8, 4, 256, 2, 64, 16, 64, 4, 32, 32, 128, 8, 32, 2, 1024, 1, 4, 32, 64, 4, 128, 2, 64, 8, 256, 4, 2048, 4, 16, 64, 64, 8, 64, 4, 256, 32, 16, 2, 2048, 4, 16, 32, 512, 1, 1024
Offset: 1

Views

Author

Frank M Jackson, Jan 04 2018

Keywords

Comments

2^n-1 for n = 0 and 1 give the Mersenne numbers 0 and 1, neither of which can be the side length of a PPT. For n > 1, all Mersenne numbers are congruent to 3 mod 4. Consequently, no Mersenne number can be the length of the hypotenuse of a PPT.
If 2^n-1 is the length of the odd leg of a PPT its divisors can provide a set of pairs {x, y} such that for each pair, x*y = 2^n-1, x < y and gcd(x, y) = 1. Using Euclid's parametric generators for PPTs (s^2+t^2, 2s*t, s^2-t^2) with s > t > 0 as positive integers, gcd(s, t) = 1 and s+t odd it is possible to generate all PPTs with 2^n-1 as the length of the odd leg providing that s = (x+y)/2 and t = (y-x)/2.
If 2^n-1 has d distinct prime factors (A046800(n)), then the set of pairs {x, y} such that x*y = 2^n-1, x < y and gcd(x, y) = 1 has a cardinality of 2^(d-1). This is because an integer m consisting of d distinct factors will have 2^d divisors and will generate pairs {x', y'} such that x'*y' = m, x' < y' and gcd(x', y') = 1 with a cardinality of 2^(d-1). Let m be the product of the distinct factor of 2^n-1 and r be the remainder consisting of the remaining repeated prime factors where m*r = 2^n-1. Then there has to be a 1 to 1 correspondence between the set of pairs {x', y'} created from the distinct prime factors of 2^n-1 and {x, y} created from all the prime factors of 2^n-1 whenever the repeated prime factors of r are combined with the distinct factors of m in the pairs {x, y} in order to preserve gcd(x, y) = 1.

Examples

			a(6)=2, because 2^6-1 = 63 gives pairs {1, 63}, {3, 21}, {7, 9} whose members when multiplied give 63. However, only two of these pairs are coprime and will generate PPTs.
		

Crossrefs

Programs

  • Mathematica
    pairs[n_] := Module[{m=2^n-1, lst=Divisors[2^n-1]}, Table[{lst[[l]], m/lst[[l]]}, {l, 1, Length[lst]/2}]]; Table[Length@Select[pairs[n], GCD@@#==1 &], {n, 1, 100}]
    a[n_] := If[n==1, 0, 2^(Length@FactorInteger[2^n-1]-1)]; Array[a, 100]

Formula

For n=1, a(n)=0 otherwise a(n)=2^(A046800(n)-1).

A336104 Number of permutations of the prime indices of A000225(n) = 2^n - 1 with at least one non-singleton run.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 96, 0, 120, 6, 0, 0, 720, 0, 0, 0, 0, 0, 720, 0, 0, 0, 0, 0, 322560, 0, 0, 0, 5040, 0, 4320, 0, 0, 0, 0, 0, 362880, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Sep 03 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(21) = 6 permutations of {4, 4, 31, 68}:
  (4,4,31,68)
  (4,4,68,31)
  (31,4,4,68)
  (31,68,4,4)
  (68,4,4,31)
  (68,31,4,4)
		

Crossrefs

A335432 is the anti-run version.
A335459 is the version for factorial numbers.
A336105 counts all permutations of this multiset.
A336107 is not restricted to predecessors of powers of 2.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A008480 counts permutations of prime indices.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A333489 ranks anti-run compositions.
A335433 lists numbers whose prime indices have an anti-run permutation.
A335448 lists numbers whose prime indices have no anti-run permutation.
A335452 counts anti-run permutations of prime indices.
A335489 counts strict permutations of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[2^n-1]],MatchQ[#,{_,x_,x_,_}]&]],{n,30}]

Formula

a(n) = A336107(2^n - 1).
a(n) = A336105(n) - A335432(n).
Showing 1-5 of 5 results.