A289292
Coefficients in expansion of E_4^(1/2).
Original entry on oeis.org
1, 120, -6120, 737760, -107249640, 17385063120, -3014720249760, 547287510713280, -102701836021530600, 19762301660609250840, -3878226140959368843120, 773209219953012480001440, -156173318001506652330786720, 31888935085481430265623676560
Offset: 0
-
terms = 14;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^(1/2) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)
A092870
Expansion of Hypergeometric function F(1/12, 5/12; 1; 1728*x) in powers of x.
Original entry on oeis.org
1, 60, 39780, 38454000, 43751038500, 54538294552560, 72081445966966800, 99225259048241726400, 140744828381240373790500, 204278086466816584003782000, 301931182921413583820949947280
Offset: 0
-
CoefficientList[ Series[ Hypergeometric2F1[ 1/12, 5/12, 1, 1728 x], {x, 0, 10}], x]
-
{a(n) = local(an); if( n<1, n==0, an = vector(n+1); an[1] = 1; for(k=1, n, an[k+1] = an[k] * 12 * (12*k - 7) * (12*k - 11) / k^2); an[n+1])}
-
{a(n)=(12^n/n!^2)*prod(k=0, n-1, (12*k+1)*(12*k+5))} \\ Paul D. Hanna, Jan 25 2011
A145492
Coefficients of certain power series associated with Atkin polynomials (see Kaneko-Zagier reference for precise definition).
Original entry on oeis.org
1, 450, 394680, 429557700, 522037315800, 678696698599920, 923563866149496000, 1298893924326291064200, 1872892788786285985719000, 2753834730409783196154778800, 4113309164116707723917886096960
Offset: 0
A145493
Coefficients of certain power series associated with Atkin polynomials (see Kaneko-Zagier reference for precise definition).
Original entry on oeis.org
1, 944, 1054170, 1297994880, 1700941165560, 2326960109485440, 3285120488273369460, 4750462777483659350400, 7000542310802147888540760, 10475220761578770433945887360, 15873347459609903883739895346480, 24308956895577230857746294480107520, 37564030601621705287879755722478648000
Offset: 0
A145494
Coefficients of certain power series associated with Atkin polynomials (see Kaneko-Zagier reference for precise definition).
Original entry on oeis.org
1, 1335, 1757970, 2386445040, 3336565609080, 4780478992153590, 6986981484124227300, 10379857332015914783040, 15630336095483779833585240, 23805745537435619756724715080, 36609525021962109091946530420080
Offset: 0
A184896
a(n) = C(2n,n) * (7^n/n!^2) * Product_{k=0..n-1} (7k+1)*(7k+6).
Original entry on oeis.org
1, 84, 45864, 35672000, 32445913500, 32247604076688, 33935228690034672, 37165308416775931392, 41919854708375196052500, 48365506771435816732770000, 56812832722107710740048677120, 67715433011522917282547695380480
Offset: 0
G.f.: A(x) = 1 + 84*x + 45864*x^2 + 35672000*x^3 +...
A(x)^(1/2) = 1 + 42*x + 22050*x^2 + 16909900*x^3 +...+ A184895(n)*x^n +...
A184892
a(n) = C(2n,n) * (5^n/n!^2) * Product_{k=0..n-1} (5k+1)*(5k+4).
Original entry on oeis.org
1, 40, 8100, 2310000, 768075000, 278719056000, 107022956040000, 42753018765600000, 17585519046944062500, 7397979398239787500000, 3168258657090171394750000, 1376657183877933677265000000
Offset: 0
G.f.: A(x) = 1 + 40*x + 8100*x^2 + 2310000*x^3 +...
A(x)^(1/2) = 1 + 20*x + 3850*x^2 + 1078000*x^3 +...+ A184891(n)*x^n +...
-
Table[Binomial[2*n, n] * 5^n / n!^2 * Product[(5*k + 1)*(5*k + 4), {k, 0, n - 1}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 07 2020 *)
-
{a(n)=(2*n)!/n!^2*(5^n/n!^2)*prod(k=0,n-1,(5*k+1)*(5*k+4))}
A184898
a(n) = C(2n,n) * (8^n/n!^2) * Product_{k=0..n-1} (8k+1)*(8k+7).
Original entry on oeis.org
1, 112, 90720, 105100800, 142542960000, 211337613527040, 331831362513530880, 542307255307827609600, 912855634598629193472000, 1571864775032876891607040000, 2755743023914838714304931102720
Offset: 0
G.f.: A(x) = 1 + 112*x + 90720*x^2 + 105100800*x^3 +...
A(x)^(1/2) = 1 + 56*x + 43792*x^2 + 50098048*x^3 +...+ A184897(n)*x^n +...
A361658
Constant term in the expansion of (1 + x^3 + y^3 + z^3 + 1/(x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 121, 841, 3361, 10081, 25201, 55441, 194041, 1287001, 7927921, 38438401, 152312161, 516079201, 1627691521, 5745472321, 25999820401, 133086258481, 651284938921, 2860955078521, 11312609403481, 42039298455001, 158864460354601, 658342633033801
Offset: 0
-
Table[n!*Sum[1/(k!^3 * (3*k)! * (n-6*k)!), {k, 0, n/6}], {n, 0, 30}] (* Vaclav Kotesovec, Mar 20 2023 *)
-
a(n) = n!*sum(k=0, n\6, 1/(k!^3*(3*k)!*(n-6*k)!));
A145495
Coefficients of certain power series associated with Atkin polynomials (see Kaneko-Zagier reference for precise definition).
Original entry on oeis.org
1, 84, 27720, 13693680, 5354228880, 2489716429200, 1010824870255200, 459492105307435200, 189737418627305920800, 85223723866764909426000, 35532611270849849570013600, 15842376246977818384652245440, 6646596943618421076833646609600, 2948532659526725719238433845966400
Offset: 0
From _Seiichi Manyama_, Aug 19 2018: (Start)
Phi_0(t)/1 = 1 + 120*t + 83160*t^2 + ... (See A001421).
Phi_1(t)/(84*t) = 1 + 450*t + 394680*t^2 + ... (See A145492).
Phi_2(t)/(27720*t^2)
= (1 + 450*t + 394680*t^2 + ... - (1 + 120*t + 83160*t^2 + ... ))/(330*t)
= 1 + 944*t + 1054170*t^2 + ... (See A145493).
Phi_3(t)/(13693680*t^3)
= (1 + 944*t + 1054170*t^2 + ... - (1 + 450*t + 394680*t^2 + ... ))/(494*t)
= 1 + 1335*t + 1757970*t^2 + ... (See A145494).
Phi_4(t)/(5354228880*t^4)
= (1 + 1335*t + 1757970*t^2 + ... - (1 + 944*t + 1054170*t^2 + ... ))/(391*t)
= 1 + 1800*t + 2783760*t^2 + ... .
Phi_5(t)/(2489716429200*t^5)
= (1 + 1800*t + 2783760*t^2 + ... - (1 + 1335*t + 1757970*t^2 + ... ))/(465*t)
= 1 + 2206*t + 3863952*t^2 + ... .
Phi_6(t)/(1010824870255200*t^6)
= (1 + 2206*t + 3863952*t^2 + ... - (1 + 1800*t + 2783760*t^2 + ... ))/(406*t)
= 1 + 18624/7*t + 36827541/7*t^2 + ... .
Phi_7(t)/(459492105307435200*t^6)
= (1 + 18624/7*t + 36827541/7*t^2 + ... - (1 + 2206*t + 3863952*t^2 + ... ))/((3182/7)*t)
= 1 + (6147/2)*t + 6715687*t^2 + ... . (End)
Showing 1-10 of 10 results.
Comments