cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001421 a(n) = (6*n)!/((n!)^3*(3*n)!).

Original entry on oeis.org

1, 120, 83160, 81681600, 93699005400, 117386113965120, 155667030019300800, 214804163196079142400, 305240072216678400087000, 443655767845074392936328000, 656486312795713480715743268160, 985646873056680684690542988249600, 1497786250388951255453847206769124800
Offset: 0

Views

Author

N. J. A. Sloane, Glenn K Painter (KUPK78A(AT)prodigy.com)

Keywords

Comments

Self-convolution of A092870, where A092870(n) = (12^n/n!^2) * Product_{k=0..n-1} (12k+1)*(12k+5). - Paul D. Hanna, Jan 25 2011

Examples

			G.f.: A(x) = 1 + 120*x + 83160*x^2 + 81681600*x^3 + ...
A(x)^(1/2) = 1 + 60*x + 39780*x^2 + 38454000*x^3 + ... + A092870(n)*x^n + ...
		

Crossrefs

Programs

  • Magma
    [Factorial(6*n)/(Factorial(n)^3*Factorial(3*n)): n in [0..15]]; // Vincenzo Librandi, Oct 26 2011
  • Maple
    f := n->(6*n)!/( (n!)^3*(3*n)!);
  • Mathematica
    Factorial[6 n]/(Factorial[3n] Factorial[n]^3) (* Jacob Lewis (jacobml(AT)uw.edu), Jul 28 2009 *)
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/6, 1/2, 5/6}, {1, 1}, 1728 x], {x, 0, n}] (* Michael Somos, Jul 11 2011 *)
  • PARI
    {a(n)=(2*n)!/n!^2*(12^n/n!^2)*prod(k=0, n-1, (6*k+1)*(6*k+5))} \\ Paul D. Hanna, Jan 25 2011
    

Formula

O.g.f.: Hypergeometric2F1(5/12, 1/12; 1; 1728x)^2. - Jacob Lewis (jacobml(AT)uw.edu), Jul 28 2009
a(n) = binomial(2n,n) * (12^n/n!^2) * Product_{k=0..n-1} (6k+1)*(6k+5). - Paul D. Hanna, Jan 25 2011
G.f.: F(1/6, 1/2, 5/6; 1, 1; 1728*x), a hypergeometric series. - Michael Somos, Feb 28 2011
0 = y^3*z^3 - 360*y^4*z^2 + 43200*y^5*z - 1728000*y^6 - 16632*x*y^2*z^3 + 7691328*x*y^3*z^2 - 1738520064*x*y^4*z + 176027074560*x*y^5 + 92207808*x^2*y*z^3 - 69176553984*x^2*y^2*z^2 + 23624298528768*x^2*y^3*z - 2853152143441920*x^2*y^4 - 170400029184*x^3*z^3 + 224945232150528*x^3*y*z^2 - 92759146352345088*x^3*y^2*z + 11686511179538104320*x^3*y^3 where x = a(n), y = a(n+1), z = a(n+2) for all n in z. - Michael Somos, Sep 21 2014
a(n) ~ 2^(6*n - 1) * 3^(3*n) / (Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Apr 07 2018
From Peter Bala, Feb 14 2020: (Start)
a(n) = binomial(6*n,n)*binomial(5*n,n)*binomial(4*n,n) = ( [x^n](1 + x)^(6*n) ) * ( [x^n](1 + x)^(5*n) ) * ( [x^n](1 + x)^(4*n) ) = [x^n](F(x)^(120*n)), where F(x) = 1 + x + 227*x^2 + 123980*x^3 + 92940839*x^4 + 82527556542*x^5 + 81459995686401*x^6 + ...
appears to have integer coefficients. For similar results see A008979.
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, equation 39, p. 12.
a(n) = [(x*y*z)^n] (1 + x + y + z)^(6*n). (End)
a(n) = (8^n/n!^3)*Product_{k = 0..3*n-1} (2*k + 1). - Peter Bala, Feb 26 2023
a(n) = 24*(6*n - 1)*(2*n - 1)*(6*n - 5)*a(n-1)/n^3. - Neven Sajko, Jul 19 2023
From Karol A. Penson, Jan 21 2025: (Start)
a(n) = Integral_{x=0..1728} x^n*W(x), with W(x) = W1(x) + W2(x) + W3(x), where
W1(x) = hypergeometric([1/6, 1/6, 1/6], [1/3, 2/3], x/1728)/(6*sqrt(Pi)*x^(5/6)*Gamma(5/6)^3),
W2(x) = - hypergeometric([1/2, 1/2, 1/2], [2/3, 4/3], x/1728)/(24*Pi^2*sqrt(x)), and
W3(x) = hypergeometric([5/6, 5/6, 5/6], [4/3, 5/3], x/1728)*Gamma(5/6)^3/(1536*Pi^(7/2)*x^(1/6)). This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem on x = (0, 1728). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with singularity x^(-1/6), and for x > 0 is monotonically decreasing to zero at x = 1728. (End)

A184895 a(n) = (7^n/n!^2) * Product_{k=0..n-1} (14k+1)*(14k+6).

Original entry on oeis.org

1, 42, 22050, 16909900, 15269639700, 15109613875944, 15853342647837688, 17325438750851187600, 19510609713302293636050, 22482485054570487449402900, 26382746561837375612125315092, 31419888802098260334367621118904
Offset: 0

Views

Author

Paul D. Hanna, Jan 25 2011

Keywords

Examples

			G.f.: A(x) = 1 + 42*x + 22050*x^2 + 16909900*x^3 +...
A(x)^2 = 1 + 84*x + 45864*x^2 + 35672000*x^3 +...+ A184896(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    FullSimplify[Table[2^(2*n) * 7^(3*n) * Gamma[n+1/14] * Gamma[n+3/7] / (Gamma[3/7] * Gamma[1/14] * Gamma[n+1]^2), {n, 0, 15}]] (* Vaclav Kotesovec, Jul 03 2014 *)
  • PARI
    {a(n)=(7^n/n!^2)*prod(k=0,n-1,(14*k+1)*(14*k+6))}

Formula

Self-convolution yields Sum_{k=0..n} a(n-k)*a(k) = A184896(n) where A184896(n) = C(2n,n) * (7^n/n!^2)*Product_{k=0..n-1} (7k+1)*(7k+6).
a(n) ~ 2^(2*n) * 7^(3*n) / (Gamma(3/7) * Gamma(1/14) * n^(3/2)). - Vaclav Kotesovec, Nov 19 2023

A184892 a(n) = C(2n,n) * (5^n/n!^2) * Product_{k=0..n-1} (5k+1)*(5k+4).

Original entry on oeis.org

1, 40, 8100, 2310000, 768075000, 278719056000, 107022956040000, 42753018765600000, 17585519046944062500, 7397979398239787500000, 3168258657090171394750000, 1376657183877933677265000000
Offset: 0

Views

Author

Paul D. Hanna, Jan 25 2011

Keywords

Examples

			G.f.: A(x) = 1 + 40*x + 8100*x^2 + 2310000*x^3 +...
A(x)^(1/2) = 1 + 20*x + 3850*x^2 + 1078000*x^3 +...+ A184891(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2*n, n] * 5^n / n!^2 * Product[(5*k + 1)*(5*k + 4), {k, 0, n - 1}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 07 2020 *)
  • PARI
    {a(n)=(2*n)!/n!^2*(5^n/n!^2)*prod(k=0,n-1,(5*k+1)*(5*k+4))}

Formula

Self-convolution of A184891, where
. A184891(n) = (5^n/n!^2) * Product_{k=0..n-1} (10k+1)*(10k+4).
a(n) ~ sqrt(5 - sqrt(5)) * 2^(2*n - 3/2) * 5^(3*n) / (Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Oct 07 2020

A184898 a(n) = C(2n,n) * (8^n/n!^2) * Product_{k=0..n-1} (8k+1)*(8k+7).

Original entry on oeis.org

1, 112, 90720, 105100800, 142542960000, 211337613527040, 331831362513530880, 542307255307827609600, 912855634598629193472000, 1571864775032876891607040000, 2755743023914838714304931102720
Offset: 0

Views

Author

Paul D. Hanna, Jan 25 2011

Keywords

Examples

			G.f.: A(x) = 1 + 112*x + 90720*x^2 + 105100800*x^3 +...
A(x)^(1/2) = 1 + 56*x + 43792*x^2 + 50098048*x^3 +...+ A184897(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=(2*n)!/n!^2*(8^n/n!^2)*prod(k=0,n-1,(8*k+1)*(8*k+7))}

Formula

Self-convolution of A184897, where A184897(n) = (8^n/n!^2) * Product_{k=0..n-1} (16k+1)*(16k+7).
a(n) ~ sqrt(2-sqrt(2)) * 2^(11*n - 1) / (Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Oct 05 2020

A185402 a(n) = C(2n,n) * (7^n/n!^2) * Product_{k=0..n-1} (7k+2)*(7k+5).

Original entry on oeis.org

1, 140, 79380, 62563200, 57288340200, 57169180452384, 60324072262534080, 66193973824733314560, 74770747698820830356700, 86365239335124673905181200, 101541339191092781603799640464
Offset: 0

Views

Author

Paul D. Hanna, Jan 26 2011

Keywords

Examples

			G.f.: A(x) = 1 + 140*x + 79380*x^2 + 62563200*x^3 +...
A(x)^(1/2) = 1 + 70*x + 37240*x^2 + 28674800*x^3 +...+ A185401(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2n,n] 7^n/(n!)^2 Product[(7k+2)(7k+5),{k,0,n-1}],{n,0,10}] (* Harvey P. Dale, May 10 2012 *)
  • PARI
    {a(n)=(2*n)!/n!^2*(7^n/n!^2)*prod(k=0,n-1,(7*k+2)*(7*k+5))}

Formula

Self-convolution of A185401:
A185401(n) = (7^n/n!^2) * Product_{k=0..n-1} (14k+2)*(14k+5).
a(n) ~ cos(3*Pi/14) * 2^(2*n) * 7^(3*n) / (Pi*n)^(3/2). - Vaclav Kotesovec, Oct 23 2020

A185404 a(n) = C(2n,n) * (7^n/n!^2) * Product_{k=0..n-1} (7k+3)*(7k+4).

Original entry on oeis.org

1, 168, 97020, 76969200, 70715452500, 70710926711040, 74713950839848320, 82063363963278297600, 92763657280052631873000, 107208829261440251585240000, 126104599836427618807641720480
Offset: 0

Views

Author

Paul D. Hanna, Jan 26 2011

Keywords

Examples

			G.f.: A(x) = 1 + 168*x + 97020*x^2 + 76969200*x^3 +...
A(x)^(1/2) = 1 + 84*x + 44982*x^2 + 34706112*x^3 +...+ A185403(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2*n, n]*(7^n/(n!)^2)*Product[(7*k + 3)*(7*k + 4), {k, 0, n - 1}], {n, 0, 50}] (* G. C. Greubel, Jun 29 2017 *)
  • PARI
    {a(n)=(2*n)!/n!^2*(7^n/n!^2)*prod(k=0,n-1,(7*k+3)*(7*k+4))}

Formula

Self-convolution of A185403:
A185403(n) = (7^n/n!^2) * Product_{k=0..n-1} (14k+3)*(14k+4).
a(n) ~ cos(Pi/14) * 2^(2*n) * 7^(3*n) / (Pi*n)^(3/2). - Vaclav Kotesovec, Oct 23 2020
Showing 1-6 of 6 results.