A092870
Expansion of Hypergeometric function F(1/12, 5/12; 1; 1728*x) in powers of x.
Original entry on oeis.org
1, 60, 39780, 38454000, 43751038500, 54538294552560, 72081445966966800, 99225259048241726400, 140744828381240373790500, 204278086466816584003782000, 301931182921413583820949947280
Offset: 0
-
CoefficientList[ Series[ Hypergeometric2F1[ 1/12, 5/12, 1, 1728 x], {x, 0, 10}], x]
-
{a(n) = local(an); if( n<1, n==0, an = vector(n+1); an[1] = 1; for(k=1, n, an[k+1] = an[k] * 12 * (12*k - 7) * (12*k - 11) / k^2); an[n+1])}
-
{a(n)=(12^n/n!^2)*prod(k=0, n-1, (12*k+1)*(12*k+5))} \\ Paul D. Hanna, Jan 25 2011
A184891
a(n) = (5^n/n!^2) * Product_{k=0..n-1} (10k+1)*(10k+4).
Original entry on oeis.org
1, 20, 3850, 1078000, 355066250, 128107903000, 49001272897500, 19520507080800000, 8012558140822125000, 3365274419145292500000, 1439327869068441602250000, 624739666805574817770000000
Offset: 0
G.f.: A(x) = 1 + 20*x + 3850*x^2 + 1078000*x^3 +...
A(x)^2 = 1 + 40*x + 8100*x^2 + 2310000*x^3 +...+ A184892(n)*x^n +...
-
Table[5^n/(n!)^2 Product[(10k+1)(10k+4),{k,0,n-1}],{n,0,20}] (* Harvey P. Dale, Feb 02 2012 *)
FullSimplify[Table[2^(2*n) * 5^(3*n) * Gamma[n+1/10] * Gamma[n+2/5] / (Gamma[2/5] * Gamma[1/10] * Gamma[n+1]^2), {n, 0, 15}]] (* Vaclav Kotesovec, Jul 03 2014 *)
-
{a(n)=(5^n/n!^2)*prod(k=0,n-1,(10*k+1)*(10*k+4))}
A184896
a(n) = C(2n,n) * (7^n/n!^2) * Product_{k=0..n-1} (7k+1)*(7k+6).
Original entry on oeis.org
1, 84, 45864, 35672000, 32445913500, 32247604076688, 33935228690034672, 37165308416775931392, 41919854708375196052500, 48365506771435816732770000, 56812832722107710740048677120, 67715433011522917282547695380480
Offset: 0
G.f.: A(x) = 1 + 84*x + 45864*x^2 + 35672000*x^3 +...
A(x)^(1/2) = 1 + 42*x + 22050*x^2 + 16909900*x^3 +...+ A184895(n)*x^n +...
A184897
a(n) = (8^n/n!^2) * Product_{k=0..n-1} (16k+1)*(16k+7).
Original entry on oeis.org
1, 56, 43792, 50098048, 67507119680, 99694514343424, 156121609461801984, 254663020429855285248, 428056704465033002591232, 736257531679856764456919040, 1289628692490437108622739390464
Offset: 0
G.f.: A(x) = 1 + 56*x + 43792*x^2 + 50098048*x^3 +...
A(x)^2 = 1 + 112*x + 90720*x^2 + 105100800*x^3 +...+ A184898(n)*x^n +...
-
FullSimplify[Table[2^(11*n) * Gamma[n+1/16] * Gamma[n+7/16] / (Gamma[n+1]^2 * Gamma[1/16] * Gamma[7/16]), {n, 0, 15}]] (* Vaclav Kotesovec, Jul 03 2014 *)
-
{a(n)=(8^n/n!^2)*prod(k=0,n-1,(16*k+1)*(16*k+7))}
A185401
a(n) = (7^n/n!^2) * Product_{k=0..n-1} (14k+2)*(14k+5).
Original entry on oeis.org
1, 70, 37240, 28674800, 25943525300, 25700693903192, 26985728598351600, 29506966670254735200, 33241442139458850123750, 38316302306082901242642500, 44974142994787866162564060800
Offset: 0
G.f.: A(x) = 1 + 70*x + 37240*x^2 + 28674800*x^3 +...
A(x)^2 = 1 + 140*x + 79380*x^2 + 62563200*x^3 +...+ A185402(n)*x^n +...
-
Table[(7^n/(n!)^2)*Product[(14*k + 2)*(14*k + 5), {k, 0, n - 1}], {n, 0, 50}] (* G. C. Greubel, Jun 29 2017 *)
-
{a(n)=(7^n/n!^2)*prod(k=0,n-1,(14*k+2)*(14*k+5))}
A185403
a(n) = (7^n/n!^2) * Product_{k=0..n-1} (14k+3)*(14k+4).
Original entry on oeis.org
1, 84, 44982, 34706112, 31430722680, 31154132320416, 32723954432339184, 35790656447712684672, 40328240610474258475572, 46491988990198595758628560, 54576945875594131561054066584
Offset: 0
G.f.: A(x) = 1 + 84*x + 44982*x^2 + 34706112*x^3 +...
A(x)^2 = 1 + 168*x + 97020*x^2 + 76969200*x^3 +...+ A185404(n)*x^n +...
-
Table[(7^n/(n!)^2)*Product[(14*k + 3)*(14*k + 4), {k, 0, n - 1}], {n, 0, 50}] (* G. C. Greubel, Jun 29 2017 *)
-
{a(n)=(7^n/n!^2)*prod(k=0,n-1,(14*k+3)*(14*k+4))}
Showing 1-6 of 6 results.
Comments