A001470 Number of degree-n permutations of order dividing 3.
1, 1, 1, 3, 9, 21, 81, 351, 1233, 5769, 31041, 142011, 776601, 4874013, 27027729, 168369111, 1191911841, 7678566801, 53474964993, 418199988339, 3044269834281, 23364756531621, 199008751634001, 1605461415071823, 13428028220072049, 123280859122040601
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..631 (terms 0..100 from T. D. Noe)
- Joerg Arndt, Generating Random Permutations, PhD thesis, Australian National University, Canberra, Australia, (2010).
- Marcello Artioli, Giuseppe Dattoli, Silvia Licciardi, and Simonetta Pagnutti, Motzkin Numbers: an Operational Point of View, arXiv:1703.07262 [math.CO], 2017. See p. 7.
- L. Moser and M. Wyman, On Solutions of x^d = 1 in Symmetric Groups, Canad. J. Math., 7 (1955), 159-168.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(x+x^3/3) ))); // G. C. Greubel, Sep 03 2023 -
Maple
spec := [S, {S=Set(Union(Cycle(Z, card=1), Cycle(Z, card=3)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..25) # David Radcliffe, Aug 29 2025
-
Mathematica
a[n_] := HypergeometricPFQ[{(1-n)/3, (2-n)/3, -n/3}, {}, -9]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 03 2011 *) With[{nn=30},CoefficientList[Series[Exp[x+x^3/3],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 12 2016 *)
-
Maxima
a(n):=n!*sum(if mod(n-k,2)=0 then binomial(k,(3*k-n)/2)*(1/3)^((n-k)/2)/k! else 0,k,floor(n/3),n); /* Vladimir Kruchinin, Sep 07 2010 */
-
SageMath
def A001470_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( exp(x+x^3/3) ).egf_to_ogf().list() A001470_list(40) # G. C. Greubel, Sep 03 2023
Formula
a(n) = Sum_{j=0..floor(n/3)} n!/(j!*(n-3j)!*(3^j)) (the latter formula from Roger Cuculière).
E.g.f.: exp(x + (1/3)*x^3).
D-finite with recurrence: a(n) = a(n-1) + (n-1)*(n-2)*a(n-3). - Geoffrey Critzer, Feb 03 2009
a(n) = n!*Sum_{k=floor(n/3)..n, n - k == 0 (mod 2)} binomial(k,(3*k-n)/2)*(1/3)^((n-k)/2)/k!. - Vladimir Kruchinin, Sep 07 2010
a(n) ~ n^(2*n/3)*exp(n^(1/3)-2*n/3)/sqrt(3) * (1 - 1/(6*n^(1/3)) + 25/(72*n^(2/3))). - Vaclav Kotesovec, Jul 28 2013