cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001582 Product of Fibonacci and Pell numbers.

Original entry on oeis.org

1, 2, 10, 36, 145, 560, 2197, 8568, 33490, 130790, 510949, 1995840, 7796413, 30454814, 118965250, 464711184, 1815292333, 7091038640, 27699580729, 108202305420, 422668460890, 1651061182538, 6449506621417, 25193576136960
Offset: 0

Views

Author

Keywords

Comments

Also number of perfect matchings (or domino tilings) in the graph W_4 X P_n.
In general, the termwise product of two Horadam sequences having signatures of (a,b) and (c,d) will be a fourth-order sequence with signature (a*c,a^2*d+2*b*d+b*c^2,a*b*c*d,-b^2*d^2). - Gary Detlefs, Oct 13 2020
a(n) + a(n-1) is the numerator of the continued fraction [1,...,1,2,...,2] with n 1's followed by n 2's. - Greg Dresden and Hexuan Wang, Aug 16 2021

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A001582:=-(z-1)*(1+z)/(1-2*z-7*z**2-2*z**3+z**4); # [conjectured (correctly) by Simon Plouffe in his 1992 dissertation]
  • Mathematica
    CoefficientList[Series[(1-x^2)/(1-2x-7x^2-2x^3+x^4),{x,0,30}],x] (* or *) LinearRecurrence[{2,7,2,-1},{1,2,10,36},30] (* Harvey P. Dale, May 01 2011 *)

Formula

G.f.: (1-x^2)/(1-2*x-7*x^2-2*x^3+x^4).
From Kieren MacMillan, Sep 29 2008: (Start)
a(n) = 11*a(n-2) + 16*a(n-3) + 3*a(n-4) - 2*a(n-5).
a(n) = 2*a(n-1) + 7*a(n-2) + 2*a(n-3) - a(n-4). (End)
a(n) = ((10+5*sqrt(2)+2*sqrt(5)+sqrt(10))*((1+sqrt(2)+sqrt(5)+sqrt(10))/2)^n+(10-5*sqrt(2)-2*sqrt(5)+sqrt(10))*((1-sqrt(2)-sqrt(5)+sqrt(10))/2)^n+(10+5*sqrt(2)-2*sqrt(5)-sqrt(10))*((1+sqrt(2)-sqrt(5)-sqrt(10))/2)^n+(10-5*sqrt(2)+2*sqrt(5)-sqrt(10))*((1-sqrt(2)+sqrt(5)-sqrt(10))/2)^n)/40. - Tim Monahan, Aug 03 2011
a(n) = A166989(n) - A166989(n-2). - R. J. Mathar, Jul 14 2016

Extensions

More terms from James Sellers, May 01 2000