cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166989 G.f.: A(x) = 1/(1 - 2*x - 7*x^2 - 2*x^3 + x^4).

Original entry on oeis.org

1, 2, 11, 38, 156, 598, 2353, 9166, 35843, 139956, 546792, 2135796, 8343205, 32590610, 127308455, 497301794, 1942600788, 7588340434, 29642181517, 115790645854, 452310642407, 1766851828392, 6901817263824, 26960427965352
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2009

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 7, 2, -1}, {1, 2, 11, 38}, 100] (* G. C. Greubel, May 30 2016 *)
  • PARI
    {a(n)=polcoeff(1/(1-2*x-7*x^2-2*x^3+x^4+x*O(x^n)),n)}
    
  • PARI
    {a(n)=if(n<0,0,if(n==0,1,2*a(n-1)+7*a(n-2)+2*a(n-3)-a(n-4)))}

Formula

G.f.: A(x) = exp( Sum_{n>=1} A000204(n)*A002203(n)*x^n/n ) where A000204 (Lucas numbers) forms the logarithmic derivative of the Fibonacci numbers (A000045) and A002203 forms the logarithmic derivative of the Pell numbers (A000129).
Recurrence: a(n) = 2*a(n-1) + 7*a(n-2) + 2*a(n-3) - a(n-4) where a(k)=0 for k<0 with a(0)=1.
Radius of convergence: r = f*p where f=(sqrt(5)-1)/2, p=sqrt(2)-1:
(f*p-x)*(1/(f*p)-x)*(f/p+x)*(p/f+x) = 1 - 2*x - 7*x^2 - 2*x^3 + x^4.
For n >= 2, a(n) - a(n-2) = Fibonacci(n+1)*Pell(n+1) = A001582(n). - Peter Bala, Aug 30 2015
a(n) = (1/2) * Sum_{i=0..n+2} (-1)^(n-i+1) * Lucas(2*i-n-2) * Pell(i) * Pell(n+2-i). - Vladimir Kruchinin, Jan 10 2025

A200541 Product of Fibonacci and tribonacci numbers: a(n) = A000045(n+1)*A000073(n+2).

Original entry on oeis.org

1, 1, 4, 12, 35, 104, 312, 924, 2754, 8195, 24386, 72576, 215991, 642785, 1912960, 5693016, 16942573, 50421592, 150056090, 446571180, 1329008590, 3955167387, 11770690808, 35029911168, 104250013425, 310251009501, 923315841860, 2747814245904, 8177573467339, 24336691577000
Offset: 0

Views

Author

Paul D. Hanna, Nov 18 2011

Keywords

Comments

Limit a(n+1)/a(n) = (sqrt(5)+1)/2 * (1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3))/3 = 2.9760284849940...

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 12*x^3 + 35*x^4 + 104*x^5 + 312*x^6 + 924*x^7 + 2754*x^8 +...+ A000045(n+1)*A000073(n+2)*x^n +...
where tribonacci numbers (A000073) begin:
[1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136,5768,10609,...],
and Fibonacci numbers (A000045) begin:
[1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,...].
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=30,fs,ts},fs=Fibonacci[Range[nn]];ts=LinearRecurrence[{1,1,1},{1,1,2},nn];Times@@@Thread[{fs,ts}]] (* or *) LinearRecurrence[ {1,4,5,2,-1,1},{1,1,4,12,35,104},30] (* Harvey P. Dale, Dec 14 2016 *)
  • PARI
    {a(n)=polcoeff((1-x^2-x^3)/(1-x-4*x^2-5*x^3-2*x^4+x^5-x^6 +x*O(x^n)),n)}
    
  • PARI
    {A000073(n)=polcoeff(x^2/(1-x-x^2-x^3+x^3*O(x^n)),n)}
    {a(n)=fibonacci(n+1)*A000073(n+2)}

Formula

G.f.: (1 - x^2 - x^3) / (1 - x - 4*x^2 - 5*x^3 - 2*x^4 + x^5 - x^6).

A344684 Sum of two consecutive products of Fibonacci and Pell numbers: F(n)*P(n) + F(n+1)*P(n+1).

Original entry on oeis.org

1, 3, 12, 46, 181, 705, 2757, 10765, 42058, 164280, 641739, 2506789, 9792253, 38251227, 149420064, 583676434, 2280003517, 8906330973, 34790619369, 135901886149, 530870766310
Offset: 0

Views

Author

Greg Dresden and Hexuan Wang, Aug 17 2021

Keywords

Comments

a(n) is the numerator of the continued fraction [1,...,1,2,...,2] with n 1's followed by n 2's.

Examples

			For n=3, a(3)=46 which is F(3)*P(3) + F(4)*P(4) = 2*5 + 3*12 = 46. Also, the continued fraction [1,1,1,2,2,2] with 3 1's followed by 3 2's has numerator 46.
		

Crossrefs

Programs

  • Mathematica
    Table[Fibonacci[n] Fibonacci[n, 2] + Fibonacci[n + 1] Fibonacci[n + 1, 2], {n, 0, 30}]
  • PARI
    P(n) = ([2, 1; 1, 0]^n)[2, 1]; \\ A000129
    a(n) = fibonacci(n)*P(n)+ fibonacci(n+1)*P(n+1); \\ Michel Marcus, Aug 18 2021

Formula

a(n) = F(n)*P(n) + F(n+1)*P(n+1) for F(n) = A000045(n) the Fibonacci numbers and P(n) = A000129(n) the Pell numbers.
a(n) = 2*a(n-1) + 7*a(n-2) + 2*a(n-3) - a(n-4).
G.f.: (1 + x - x^2 - x^3)/(1 - 2*x - 7*x^2 - 2*x^3 + x^4).
a(n) = A001582(n-1) + A001582(n) for n >= 1.
Showing 1-3 of 3 results.