A001590 Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=0, a(1)=1, a(2)=0.
0, 1, 0, 1, 2, 3, 6, 11, 20, 37, 68, 125, 230, 423, 778, 1431, 2632, 4841, 8904, 16377, 30122, 55403, 101902, 187427, 344732, 634061, 1166220, 2145013, 3945294, 7256527, 13346834, 24548655, 45152016, 83047505, 152748176, 280947697, 516743378, 950439251
Offset: 0
Examples
a(12)=a(11)+a(10)+a(9): 230=125+68+37. For n=5 the partitions of 5 are 1+1+1+1+1 (1 composition), 1+1+1+2 (4 compositions), 1+2+2 (3 compositions), 1+1+3 (not contrib because 3 is a part), 2+3 (no contrib because 3 is a part), 1+4 (2 compositions) and 5 (1 composition), total 1+4+3+2+1=11 =a(5+2) - _R. J. Mathar_, Jan 13 2023
References
- Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- Kassie Archer and Noel Bourne, Pattern avoidance in compositions and powers of permutations, arXiv:2505.05218 [math.CO], 2025. See p. 8.
- Barry Balof, Restricted tilings and bijections, J. Integer Seq. 15 (2012), no. 2, Article 12.2.3, 17 pp.
- Matthias Beck and Neville Robbins, Variations on a Generatingfunctional Theme: Enumerating Compositions with Parts Avoiding an Arithmetic Sequence, arXiv:1403.0665 [math.NT], 2014.
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- M. Feinberg, Fibonacci-Tribonacci, Fib. Quart. 1(3) (1963), 71-74.
- M. Feinberg, New slants, Fib. Quart. 2 (1964), 223-227.
- Wojciech Florek, A class of generalized Tribonacci sequences applied to counting problems, Appl. Math. Comput., 338 (2018), 809-821.
- Petros Hadjicostas, Cyclic Compositions of a Positive Integer with Parts Avoiding an Arithmetic Sequence, Journal of Integer Sequences, 19 (2016), Article 16.8.2.
- V. E. Hoggatt, Jr. and Marjorie Bicknell, Palindromic compositions, Fib. Quart 13 (4) (1975) 357, eq (2.7)
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 9.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 401
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
- Tamara Kogan, Luba Sapir, Amir Sapir, and Ariel Sapir, The Fibonacci family of iterative processes for solving nonlinear equations, Applied Numerical Mathematics 110 (2016) 148-158.
- Daniel Krob and Jean-Yves Thibon, Higher order peak algebras, arXiv:math/0411407 [math.CO], 2004.
- Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
- Sepideh Maleki and Martin Burtscher, Automatic Hierarchical Parallelization of Linear Recurrences, Proceedings of the 23rd International Conference on Architectural Support for Programming Languages and Operating Systems, ACM, 2018.
- M. A. Nyblom, Counting Palindromic Binary Strings Without r-Runs of Ones, J. Int. Seq. 16 (2013) #13.8.7. P_3(n) = 1,2,2,3,3,6,6,11,11,...
- Helmut Prodinger, Counting Palindromes According to r-Runs of Ones Using Generating Functions, J. Int. Seq. 17 (2014) # 14.6.2, even length, r=2.
- Karim Ritter von Merkl, Computing colored Khovanov homology, arXiv:2505.03916 [math.QA], 2025. See p. 13.
- Neville Robbins, On Tribonacci Numbers and 3-Regular Compositions, Fibonacci Quart. 52 (2014), no. 1, 16-19. See Adamson's comments.
- Bo Tan and Zhi-Ying Wen, Some properties of the Tribonacci sequence, European Journal of Combinatorics, 28 (2007) 1703-1719.
- M. E. Waddill and L. Sacks, Another generalized Fibonacci sequence, Fib. Quart., 5 (1967), 209-222.
- Eric Weisstein's World of Mathematics, Tribonacci Number
- Index entries for linear recurrences with constant coefficients, signature (1,1,1).
Programs
-
GAP
a:=[0,1,0];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Oct 24 2018
-
Magma
I:=[0,1,0]; [n le 3 select I[n] else Self(n-1)+Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Apr 19 2018
-
Maple
seq(coeff(series(x*(1-x)/(1-x-x^2-x^3),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Oct 24 2018 # alternative A001590 := proc(n) option remember; if n <=2 then op(n+1,[0,1,0]) ; else procname(n-1)+procname(n-2)+procname(n-3) ; end if; end proc: seq(A001590(n),n=0..30) ;# R. J. Mathar, Nov 22 2024
-
Mathematica
LinearRecurrence[{1,1,1}, {0,1,0}, 50] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *) RecurrenceTable[{a[0]==0, a[1]==1, a[2]==0, a[n]==a[n-1]+a[n-2]+a[n-3]}, a, {n, 40}] (* Vincenzo Librandi, Apr 19 2018 *)
-
PARI
a(n)=([0,1,0; 0,0,1; 1,1,1]^n*[0;1;0])[1,1] \\ Charles R Greathouse IV, Jul 28 2015
-
Sage
def A001590(): W = [0, 1, 0] while True: yield W[0] W.append(sum(W)) W.pop(0) a = A001590(); [next(a) for in range(38)] # _Peter Luschny, Sep 12 2016
Formula
G.f.: x*(1-x)/(1-x-x^2-x^3).
Limit a(n)/a(n-1) = t where t is the real solution of t^3 = 1 + t + t^2, t = A058265 = 1.839286755... . If T(n) = A000073(n) then t^n = T(n-1) + a(n)*t + T(n)*t^2, for n >= 0, with T(-1) = 1.
a(3*n) = Sum_{k+l+m=n} (n!/k!l!m!)*a(l+2*m). Example: a(12)=a(8)+4a(7)+10a(6)+16a(5)+19a(4)+16a(3)+10a(2)+4a(1)+a(0) The coefficients are the trinomial coefficients. T(n) and T(n-1) also satisfy this equation. (T(-1)=1)
From Reinhard Zumkeller, May 22 2006: (Start)
A000213(n-2) = a(n+1)-a(n) for n>1. (End)
a(n) + a(n+1) = A000213(n). - Philippe Deléham, Sep 25 2006
If p[1]=0, p[i]=2, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n+1)=det A. - Milan Janjic, May 02 2010
For n>=4, a(n)=2*a(n-1)-a(n-4). - Bob Selcoe, Feb 18 2014
a(-1-n) = -A078046(n). - Michael Somos, Jun 01 2014
a(n) = Sum_{r root of x^3-x^2-x-1} r^n/(3*r+1). - Fabian Pereyra, Nov 22 2024
Extensions
Additional comments from Miklos Kristof, Jul 03 2002
Comments