cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001607 a(n) = -a(n-1) - 2*a(n-2).

Original entry on oeis.org

0, 1, -1, -1, 3, -1, -5, 7, 3, -17, 11, 23, -45, -1, 91, -89, -93, 271, -85, -457, 627, 287, -1541, 967, 2115, -4049, -181, 8279, -7917, -8641, 24475, -7193, -41757, 56143, 27371, -139657, 84915, 194399, -364229, -24569, 753027, -703889
Offset: 0

Views

Author

Keywords

Comments

The sequences A001607, A077020, A107920, A167433, A169998 are all essentially the same except for signs.
Apart from the sign, this is an example of a sequence of Lehmer numbers. In this case, the two parameters, alpha and beta, are (1 +- i*sqrt(7))/2. Bilu, Hanrot, Voutier and Mignotte show that all terms of a Lehmer sequence a(n) have a primitive factor for n > 30. Note that for this sequence, a(30) = 24475 = 5*5*11*89 has no primitive factors. - T. D. Noe, Oct 29 2003

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from signs, same as A077020.
Cf. A172250.

Programs

  • Magma
    [n eq 1 select 0 else n eq 2 select 1 else -Self(n-1)-2*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Aug 22 2011
    
  • Mathematica
    LinearRecurrence[{-1,-2},{0,1},60] (* Harvey P. Dale, Aug 21 2011 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(x/(1+x+2*x^2)+x*O(x^n),n))
    
  • PARI
    a(n)=if(n<0,0,2*imag(((-1+quadgen(-28))/2)^n))
    
  • SageMath
    A001607=BinaryRecurrenceSequence(-1,-2,0,1)
    [A001607(n) for n in range(51)] # G. C. Greubel, Mar 24 2024

Formula

G.f.: x/(1+x+2*x^2).
a(n) = Sum_{k=0..n-1} (-1)^(n-k-1)*binomial(n-k-1, k)*2^k = -2/sqrt(7)*(-sqrt(2))^n*(sin(n*arctan(sqrt(7)))). - Vladeta Jovovic, Feb 05 2003
x/(x^2+x+2) = Sum_{n>=0} a(n)*(x/2)^n. - Benoit Cloitre, Mar 12 2002
4*2^n = A002249(n)^2 + 7*A001607(n)^2. See A077020, A077021.
a(n+1) = Sum_{k=0..n} A172250(n,k)*(-1)^k. - Philippe Deléham, Feb 15 2012
G.f.: x - 2*x^2 + 2*x^2/(G(0)+1) where G(k) = 1 + x/(1 - x/(x - 1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 16 2012
a(n) = 2^((n-1)/2)*ChebyshevU(n-1, -1/(2*sqrt(2))). - G. C. Greubel, Mar 24 2024
a(n) = (i*(((-1 - i*sqrt(7))/2)^n - ((-1 + i*sqrt(7))/2)^n))/sqrt(7). - Alan Michael Gómez Calderón, Jul 09 2024; after T. D. Noe, Oct 29 2003