A001607 a(n) = -a(n-1) - 2*a(n-2).
0, 1, -1, -1, 3, -1, -5, 7, 3, -17, 11, 23, -45, -1, 91, -89, -93, 271, -85, -457, 627, 287, -1541, 967, 2115, -4049, -181, 8279, -7917, -8641, 24475, -7193, -41757, 56143, 27371, -139657, 84915, 194399, -364229, -24569, 753027, -703889
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- Y. Bilu, G. Hanrot, P. M. Voutier, and M. Mignotte, Existence of primitive divisors of Lucas and Lehmer numbers, [Research Report] RR-3792, INRIA. 1999, pp. 41, HAL Id : inria-00072867.
- Taras Goy and Mark Shattuck, Determinants of Toeplitz-Hessenberg Matrices with Generalized Leonardo Number Entries, Ann. Math. Silesianae (2023). See p. 14.
- Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 82.
- Erwin Just, Problem E2367, Amer. Math. Monthly, 79 (1972), 772.
- G. P. Michon, Never Back to -1.
- M. Mignotte, Propriétés arithmétiques des suites récurrentes, Besançon, 1988-1989, see p. 14. In French.
- Eric Weisstein's World of Mathematics, Lehmer Number
- Index entries for linear recurrences with constant coefficients, signature (-1,-2).
Crossrefs
Programs
-
Magma
[n eq 1 select 0 else n eq 2 select 1 else -Self(n-1)-2*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Aug 22 2011
-
Mathematica
LinearRecurrence[{-1,-2},{0,1},60] (* Harvey P. Dale, Aug 21 2011 *)
-
PARI
a(n)=if(n<0,0,polcoeff(x/(1+x+2*x^2)+x*O(x^n),n))
-
PARI
a(n)=if(n<0,0,2*imag(((-1+quadgen(-28))/2)^n))
-
SageMath
A001607=BinaryRecurrenceSequence(-1,-2,0,1) [A001607(n) for n in range(51)] # G. C. Greubel, Mar 24 2024
Formula
G.f.: x/(1+x+2*x^2).
a(n) = Sum_{k=0..n-1} (-1)^(n-k-1)*binomial(n-k-1, k)*2^k = -2/sqrt(7)*(-sqrt(2))^n*(sin(n*arctan(sqrt(7)))). - Vladeta Jovovic, Feb 05 2003
x/(x^2+x+2) = Sum_{n>=0} a(n)*(x/2)^n. - Benoit Cloitre, Mar 12 2002
a(n+1) = Sum_{k=0..n} A172250(n,k)*(-1)^k. - Philippe Deléham, Feb 15 2012
G.f.: x - 2*x^2 + 2*x^2/(G(0)+1) where G(k) = 1 + x/(1 - x/(x - 1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 16 2012
a(n) = 2^((n-1)/2)*ChebyshevU(n-1, -1/(2*sqrt(2))). - G. C. Greubel, Mar 24 2024
a(n) = (i*(((-1 - i*sqrt(7))/2)^n - ((-1 + i*sqrt(7))/2)^n))/sqrt(7). - Alan Michael Gómez Calderón, Jul 09 2024; after T. D. Noe, Oct 29 2003
Comments