A001609 a(1) = a(2) = 1, a(3) = 4; thereafter a(n) = a(n-1) + a(n-3).
1, 1, 4, 5, 6, 10, 15, 21, 31, 46, 67, 98, 144, 211, 309, 453, 664, 973, 1426, 2090, 3063, 4489, 6579, 9642, 14131, 20710, 30352, 44483, 65193, 95545, 140028, 205221, 300766, 440794, 646015, 946781, 1387575, 2033590, 2980371, 4367946, 6401536, 9381907
Offset: 1
Examples
G.f. = x + x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 10*x^6 + 15*x^7 + 21*x^8 + ...
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..6012 (terms 1..500 from T. D. Noe)
- Ignacio Cascudo, On squares of cyclic codes, arXiv:1703.01267 [cs.IT], 2017. See Theorem 6.1/Table 1.
- Johann Cigler, Some remarks on generalized Fibonacci and Lucas polynomials, arXiv:1912.06651 [math.CO], 2019.
- E. Di Cera and Y. Kong, Theory of multivalent binding in one and two-dimensional lattices, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.
- Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
- Daniel C. Fielder, Errata:Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
- Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 91.
- Matthew Macauley, Jon McCammond, Henning S. Mortveit, Dynamics groups of asynchronous cellular automata, Journal of Algebraic Combinatorics, Vol 33, No 1 (2011), pp. 11-35.
- M. Newman and D. Shanks, On a sequence arising in series for pi, Math. Comp., 42 (1984), 199-217 (see Eq. 29).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Souvik Roy, Nazim Fatès, and Sukanta Das, Reversibility of Elementary Cellular Automata with fully asynchronous updating: an analysis of the rules with partial recurrence, hal-04456320 [nlin.CG], [cs], 2024. See p. 19.
- T. Sillke, The binary form of Conway's sequence
- Z. Skupien, Sparse Hamiltonian 2-decompositions together with exact count of numerous Hamiltonian cycles, Discr. Math., 309 (2009), 6382-6390. - _N. J. A. Sloane_, Feb 12 2010
- Index entries for linear recurrences with constant coefficients, signature (1,0,1).
Crossrefs
Programs
-
Magma
I:=[1,1,4]; [n le 3 select I[n] else Self(n-1)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Jun 28 2015
-
Maple
A001609:=-(1+3*z**2)/(-1+z+z**3); # Simon Plouffe in his 1992 dissertation f:= gfun:-rectoproc({a(n) = a(n-1) + a(n-3), a(1)=1,a(2)=1,a(3)=4},a(n),remember): map(f, [$1..100]); # Robert Israel, Jun 29 2015
-
Mathematica
Table[Tr[MatrixPower[{{0, 0, 1}, {1, 0, 0}, {0, 1, 1}}, n]], {n, 1, 60}] (* Artur Jasinski, Jan 10 2007 *) Table[ HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -(n/3)}, {1/2 - n/2, 1 - n/2}, -(27/4)], {n, 20}] (* Alexander R. Povolotsky, Nov 21 2008 *) a[1] = a[2] = 1; a[3] = 4; m = 3; a[n_] := 1 + n*Sum [Binomial [n - 1 - (m - 1)*i, i - 1]/i, {i, n/m}] A001609 = Table[a[n], {n, 100}] (* Zak Seidov, Nov 21 2008 *) LinearRecurrence[{1, 0, 1}, {1, 1, 4}, 50] (* Vincenzo Librandi, Jun 28 2015 *)
-
PARI
{a(n) = if( n<1, n=-n; polcoeff( (3 + x^2) / (1 + x^2 - x^3) + x * O(x^n), n), polcoeff( x * (1 + 3*x^2) / (1 - x - x^3) + x * O(x^n), n))}; /* Michael Somos, Aug 15 2016 */
Formula
G.f.: x*(1 + 3*x^2)/(1 - x - x^3).
a(n) = trace of successive powers of matrix ({{0,0,1},{1,0,0},{0,1,1}})^n. - Artur Jasinski, Jan 10 2007
Logarithmic derivative of Narayana's cows sequence A000930. - Paul D. Hanna, Oct 28 2012
a(n) = w1^n + w2^n + w3^n, where w1,w2,w3 are the roots of the cubic: (-1 - x^2 + x^3), see A092526. - Gerry Martens, Jun 27 2015
Extensions
Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000
More terms from Michael Somos, Oct 03 2002
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
Comments