A001614 Connell sequence: 1 odd, 2 even, 3 odd, ...
1, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17, 19, 21, 23, 25, 26, 28, 30, 32, 34, 36, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 64, 65, 67, 69, 71, 73, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 122
Offset: 1
Examples
From _Omar E. Pol_, Aug 13 2013: (Start) Written as a triangle the sequence begins: 1; 2, 4; 5, 7, 9; 10, 12, 14, 16; 17, 19, 21, 23, 25; 26, 28, 30, 32, 34, 36; 37, 39, 41, 43, 45, 47, 49; 50, 52, 54, 56, 58, 60, 62, 64; 65, 67, 69, 71, 73, 75, 77, 79, 81; 82, 84, 86, 88, 90, 92, 94, 96, 98, 100; ... Right border gives A000290, n >= 1. (End)
References
- C. Pickover, Computers and the Imagination, St. Martin's Press, NY, 1991, p. 276.
- C. A. Pickover, The Mathematics of Oz, Chapter 39, Camb. Univ. Press UK 2002.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Ian Connell and Andrew Korsak, Problem E1382, Amer. Math. Monthly, 67 (1960), 380.
- Douglas E. Iannucci and Donna Mills-Taylor, On Generalizing the Connell Sequence, J. Integer Sequences, Vol. 2, 1999, #99.1.7.
- H. P. Robinson and N. J. A. Sloane, Correspondence, 1971-1972
- N. J. A. Sloane, Handwritten notes on Self-Generating Sequences, 1970 (note that A1148 has now become A005282)
- Gary E. Stevens, A Connell-Like Sequence, J. Integer Sequences, Vol. 1, 1998, #98.1.4.
- Eric Weisstein's World of Mathematics, Connell Sequence
Crossrefs
Cf. A069778. - Gary W. Adamson, Sep 01 2008
From Johannes W. Meijer, May 20 2011: (Start)
Triangle columns: A002522, A117950 (n>=1), A117951 (n>=2), A117619 (n>=3), A154533 (n>=5), A000290 (n>=1), A008865 (n>=2), A028347 (n>=3), A028878 (n>=1), A028884 (n>=2), A054569 [T(2*n,n)].
Programs
-
Haskell
a001614 n = a001614_list !! (n-1) a001614_list = f 0 0 a057211_list where f c z (x:xs) = z' : f x z' xs where z' = z + 1 + 0 ^ abs (x - c) -- Reinhard Zumkeller, Dec 30 2011
-
Magma
[2*n-Round(Sqrt(2*n)): n in [1..80]]; // Vincenzo Librandi, Apr 17 2015
-
Maple
A001614:=proc(n): 2*n - floor((1+sqrt(8*n-7))/2) end: seq(A001614(n),n=1..67); # Johannes W. Meijer, May 20 2011
-
Mathematica
lst={};i=0;For[j=1, j<=4!, a=i+1;b=j;k=0;For[i=a, i<=9!, k++;AppendTo[lst, i];If[k>=b, Break[]];i=i+2];j++ ];lst (* Vladimir Joseph Stephan Orlovsky, Aug 29 2008 *) row[n_] := 2*Range[n+1]+n^2-1; Table[row[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Oct 25 2013 *)
-
PARI
a(n)=2*n - round(sqrt(2*n)) \\ Charles R Greathouse IV, Apr 20 2015
-
Python
from math import isqrt def A001614(n): return (m:=n<<1)-(k:=isqrt(m))-int((m<<2)>(k<<2)*(k+1)+1) # Chai Wah Wu, Jul 26 2022
Formula
a(n) = 2*n - floor( (1+ sqrt(8*n-7))/2 ).
a(n) = A118012(A118011(n)). A117384( a(n) ) = n; A117384( 4*n - a(n) ) = n. - Paul D. Hanna, Apr 10 2006
a(1) = 1; then a(n) = a(n-1)+1 if a(n-1) is a square, a(n) = a(n-1)+2 otherwise. For example, a(21)=36 is a square therefore a(22)=36+1=37 which is not a square so a(23)=37+2=39 ... - Benoit Cloitre, Feb 07 2007
T(n,k) = (n-1)^2 + 2*k - 1. - Omar E. Pol, Aug 13 2013
a(n)^2 = a(n*(n+1)/2). - Ivan N. Ianakiev, Aug 15 2013
Let the sequence be written in the form of the triangle in the EXAMPLE section below and let a(n) and a(n+1) belong to the same row of the triangle. Then a(n)*a(n+1) + 1 = a(A000217(A118011(n))) = A000290(A118011(n)). - Ivan N. Ianakiev, Aug 16 2013
a(n) = 2*n-round(sqrt(2*n)). - Gerald Hillier, Apr 15 2015
From Robert Israel, Apr 20 2015 (Start):
G.f.: 2*x/(1-x)^2 - (x/(1-x))*Sum_{n>=0} x^(n*(n+1)/2) = 2*x/(1-x)^2 - (Theta2(0,x^(1/2)))*x^(7/8)/(2*(1-x)) where Theta2 is a Jacobi theta function.
a(n) = 2*n-1 - Sum_{i=0..n-2} A023531(i). (End)
a(n) = 3*n-A014132(n). - Chai Wah Wu, Oct 19 2024
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Mar 16 2001
Comments