cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001628 Convolved Fibonacci numbers.

Original entry on oeis.org

1, 3, 9, 22, 51, 111, 233, 474, 942, 1836, 3522, 6666, 12473, 23109, 42447, 77378, 140109, 252177, 451441, 804228, 1426380, 2519640, 4434420, 7777860, 13599505, 23709783, 41225349, 71501422, 123723351, 213619683, 368080793, 633011454, 1086665562, 1862264196
Offset: 0

Views

Author

Keywords

Comments

a(n-2) = (((-i)^(n-2))/2)*(d^2/dx^2)S(n,x)|A049310%20for%20the%20S-polynomials.%20-%20_Wolfdieter%20Lang">{x=i}, n>=2. Second derivative of Chebyshev S-polynomials evaluated at x=i (imaginary unit) multiplied by ((-i)^(n-2))/2. See A049310 for the S-polynomials. - _Wolfdieter Lang, Apr 04 2007
a(n) = number of weak compositions of n in which exactly 2 parts are 0 and all other parts are either 1 or 2. - Milan Janjic, Jun 28 2010
Number of 4-cycles in the Fibonacci cube Gamma[n+3] (see the Klavzar reference, p. 511). - Emeric Deutsch, Apr 17 2014

Examples

			G.f. = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 111*x^5 + 233*x^6 + 474*x^7 + ...
		

References

  • T. Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001, p. 375.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A037027(n+2,2) (Fibonacci convolution triangle).
Cf. A055243 (first differences).
Cf. A291915 (6-cycles).

Programs

  • Magma
    [(&+[Binomial(k,n-k)*Binomial(k+2,2): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jan 10 2018
  • Maple
    A001628:=-1/(z**2+z-1)**3; [Simon Plouffe in his 1992 dissertation.]
    a:= n-> (Matrix(6, (i, j)-> `if` (i=j-1, 1, `if` (j=1, [3, 0, -5, 0, 3, 1][i], 0)))^n)[1,1]: seq (a(n), n=0..29); # Alois P. Heinz, Aug 01 2008
  • Mathematica
    CoefficientList[Series[1/(-z^2 - z + 1)^3, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
    (* Start Eric W. Weisstein, Sep 05 2017 *)
    Table[Derivative[2][Fibonacci[n + 2, #] &][1]/2, {n, 20}]
    Derivative[2][Fibonacci[Range[20] + 2, #] &][1]/2
    LinearRecurrence[{3, 0, -5, 0, 3, 1}, {1, 3, 9, 22, 51, 111}, 20]
    Table[-I^(n + 1) Derivative[2][ChebyshevU[n + 1, -#/2] &][I]/2, {n, 20}]
    (* End *)
  • PARI
    Vec((1 - x - x^2 )^-3+O(x^99)) \\ Charles R Greathouse IV, Jul 01 2011
    

Formula

G.f.: 1 / (1 - x - x^2)^3.
a(n) = A037027(n+2,2) (Fibonacci convolution triangle).
a(n) = ((5*n+16)*(n+1)*F(n+2)+(5*n+17)*(n+2)*F(n+1))/50, F=A000045. - Wolfdieter Lang, Apr 12 2000 (This formula coincides with eq. (32.14) of the Koshy reference, p. 375, if there n -> n+3. - Wolfdieter Lang, Aug 03 2012)
For n>2, a(n-2) = sum(i+j+k=n, F(i)*F(j)*F(k)). - Benoit Cloitre, Nov 01 2002
a(n) = F''(n+2, 1)/2, i.e. 1/2 times the 2nd derivative of the (n+2)th Fibonacci polynomial evaluated at 1. - T. D. Noe, Jan 18 2006
a(n) = Sum_{k=0..n} C(k,n-k)*C(k+2,2). - Paul Barry, Apr 13 2008
0 = n*a(n) - (n+2)*a(n-1) - (n+4)*a(n-2), n>1. - Michael D. Weiner, Nov 18 2014
a(n) = 3*a(n-1) - 5*a(n-3) + 3*a(n-5) + a(n-6). - Eric W. Weisstein, Sep 05 2017