A001638 A Fielder sequence: a(n) = a(n-1) + a(n-3) + a(n-4), n >= 4.
4, 1, 1, 4, 9, 11, 16, 29, 49, 76, 121, 199, 324, 521, 841, 1364, 2209, 3571, 5776, 9349, 15129, 24476, 39601, 64079, 103684, 167761, 271441, 439204, 710649, 1149851, 1860496, 3010349, 4870849, 7881196, 12752041, 20633239, 33385284, 54018521, 87403801
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
- Fern Gossow, Lyndon-like cyclic sieving and Gauss congruence, arXiv:2410.05678 [math.CO], 2024. See p. 26.
- Middle European Math Olympiad 2010, Team Problem 3. Available online at the Art of Problem Solving. - _Joel B. Lewis_, Sep 12 2010
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Cycle Graph
- Eric Weisstein's World of Mathematics, Total Dominating Set
- Wikipedia, Companion matrix.
- A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no.
- 6, 2006, pp. 840-855.
- Index to sequences related to Olympiads.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).
Programs
-
Magma
I:=[4,1,1,4]; [n le 4 select I[n] else Self(n-1) + Self(n-3) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 09 2018
-
Maple
A001638:=-(z+1)*(4*z**2-z+1)/(z**2+z-1)/(z**2+1); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for the initial 4
-
Mathematica
LinearRecurrence[{1, 0, 1, 1}, {4, 1, 1, 4}, 50] (* T. D. Noe, Aug 09 2012 *) Table[LucasL[n] + 2 Cos[n Pi/2], {n, 0, 20}] (* Eric W. Weisstein, Apr 10 2018 *) CoefficientList[Series[(-4 + 3 x + x^3)/(-1 + x + x^3 + x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 10 2018 *)
-
PARI
a(n)=if(n<0,0,fibonacci(n+1)+fibonacci(n-1)+simplify(I^n+(-I)^n))
-
PARI
a(n)=if(n<0,0,polsym((1+x-x^2)*(1+x^2),n)[n+1])
Formula
G.f.: (1-x)*(4+x+x^2)/((1+x^2)*(1-x-x^2)).
a(n) = L(n) + i^n + (-i)^n, a(2n) = L(n)^2, a(2n+1) = L(2n+1) where L() is Lucas sequence A000032.
a(n) = a(n-1) + a(n-3) + a(n-4). - Eric W. Weisstein, Apr 10 2018
a(n) = Trace(M^n), where M = [0, 0, 0, 1; 1, 0, 0, 1; 0, 1, 0, 0; 0, 0, 1, 1] is the companion matrix to the monic polynomial x^4 - x^3 - x - 1. . It follows that the sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. - Peter Bala, Jan 08 2023
Extensions
Edited by Michael Somos, Feb 17 2002 and Nov 02 2002
Comments