cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001702 Generalized Stirling numbers.

Original entry on oeis.org

1, 24, 154, 580, 1665, 4025, 8624, 16884, 30810, 53130, 87450, 138424, 211939, 315315, 457520, 649400, 903924, 1236444, 1664970, 2210460, 2897125, 3752749, 4809024, 6101900, 7671950, 9564750, 11831274, 14528304, 17718855, 21472615, 25866400, 30984624
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For n > 1, a(n) = A145324(n+2,4).

Programs

  • GAP
    Concatenation([1],List([2..35],n->(n-1)*n*(n+1)*(n+4)*(n^2+7*n+14)/48)); # Muniru A Asiru, Sep 29 2018
    
  • Magma
    [1] cat [n*(n^2-1)*(n+4)*(n^2+7*n+14)/48: n in [2..35]]; // Vincenzo Librandi, Sep 30 2018
    
  • Maple
    A001702 := proc(n)
        if n = 1 then
            1 ;
        else
            (n-1)*n*(n+1)*(n+4)*(n^2+7*n+14)/48 ;
        end if;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    Join[{1}, Table[(n-1) n (n+1) (n+4) (n^2 + 7 n + 14)/48, {n, 2, 100}]] (* T. D. Noe, Aug 09 2012 *)
    CoefficientList[Series[1 +x*(x-4)*(x^2-2*x+6)/(x-1)^7, {x, 0, 100}], x] (* Stefano Spezia, Sep 30 2018 *)
    Join[{1},Table[Coefficient[Product[x + j, {j, 2, k}], x, k - 4], {k, 4, 40}]]  (* or *)  Join[{1}, LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {24, 154, 580, 1665, 4025, 8624, 16884}, 40]] (* Robert A. Russell, Oct 04 2018 *)
  • PARI
    vector(50, n, if(n==1, 1, (1/48)*(n-1)*n* (n+1)* (n+4)*(n^2 +7*n +14))) \\G. C. Greubel, Oct 06 2018

Formula

a(n) = (1/48)*(n-1)*n*(n+1)*(n+4)*(n^2+7n+14), n > 1.
G.f.: x + x^2*(x-4)*(x^2-2*x+6)/(x-1)^7. - Simon Plouffe in his 1992 dissertation
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a - j), then a(n-1) = -f(n,n-3,2), for n >= 3. - Milan Janjic, Dec 20 2008
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Colin Barker, Jul 08 2020