cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001794 Negated coefficients of Chebyshev T polynomials: [x^n](-T(n+6, x)), n >= 0.

Original entry on oeis.org

1, 7, 32, 120, 400, 1232, 3584, 9984, 26880, 70400, 180224, 452608, 1118208, 2723840, 6553600, 15597568, 36765696, 85917696, 199229440, 458752000, 1049624576, 2387607552, 5402263552, 12163481600, 27262976000, 60850962432
Offset: 0

Views

Author

Keywords

Comments

A negated subdiagonal of A053120.
If X_1,X_2,...,X_n are 2-blocks of a (2n+1)-set X then a(n-2) is the number of (n+3)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 18 2007
The third corrector line for transforming 2^n offset 0 with a leading 1 into the Fibonacci sequence. - Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009
a(n-2) is the number of strings of length n defined on {0, 1, 2, 3} that have exactly two 2's and no 3's or exactly three 3's and no 2's. For example, for n=4, a(2)=32 since the strings are the 6 permutations of 2200, the 12 permutations of 2201, the 6 permutations of 2211, the 4 permutations of 3330, and the 4 permutations of 3331. - Enrique Navarrete, Jun 03 2025

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A039991 (negative of column 6), A028297, A008310, A053120.
With alternating signs, the o.g.f. (with offset 1) is the inverse of the o.g.f. of A065097.
Cf. A001789 (partial sums), A081279 (binomial transform), A005900 (0 followed by inverse binomial transform).

Programs

  • GAP
    List([0..25],n->2^(n-2)*(n+1)*(n+2)*(n+6)/3); # Muniru A Asiru, Mar 20 2018
  • Magma
    [2^(n-1)/3*Binomial(n+2,2)*(n+6) : n in [0..25]]; // Brad Clardy, Mar 08 2012
    
  • Maple
    [seq(coeftayl((1-x)/(1-2*x)^4, x = 0, k), k=0..25)]; # Muniru A Asiru, Mar 20 2018
  • Mathematica
    a[n_] := 2^(n-2)*(n+1)*(n+2)*(n+6)/3; a /@ Range[0, 20] (* Giovanni Resta, Mar 25 2017 *)
    LinearRecurrence[{8,-24,32,-16},{1,7,32,120},30] (* Harvey P. Dale, Oct 08 2024 *)
  • PARI
    a(n) = sum(i=0, n+1, sum(k=0, i, k^2*binomial(n+1, i))); \\ Michel Marcus, Mar 25 2017
    
  • PARI
    a(n) = - polcoeff(polchebyshev(n+6), n); \\ Michel Marcus, Mar 20 2018
    

Formula

a(n) = 2^(n-2)*(n+1)*(n+2)*(n+6)/3. [See a comment in A053120 on subdiagonals. - Wolfdieter Lang, Jan 03 2020]
G.f.: (1-x)/(1-2*x)^4. - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{k=0..floor((n+6)/2)} C(n+6, 2*k)*C(k, 3). - Paul Barry, May 15 2003
With a leading zero, the binomial transform of A000330. - Paul Barry, Jul 19 2003
a(n) = Sum_{i=0..n+1} (Sum{k=0..i} (k^2*binomial(n+1, i))). - Jon Perry, Feb 26 2004 [corrected by Michel Marcus, Mar 25 2017]
Binomial transform of a(n) = (2*n^3 + 6*n^2 + 7*n + 3)/3 offset 0. a(3)=120. - Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009
a(n) = (2^(n-1)/3)*binomial(n+2,2)*(n+6). - Brad Clardy, Mar 08 2012
E.g.f.: (1/3)*exp(2*x)*(3 + 15*x + 12*x^2 + 2*x^3). - Stefano Spezia, Jan 03 2020
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=0} 1/a(n) = 156*log(2)/5 - 511/25.
Sum_{n>=0} (-1)^n/a(n) = 241/25 - 108*log(3/2)/5. (End)
E.g.f.: exp(2*x)*(x^2/2 + x^3/6) (with two leading zeros). - Enrique Navarrete, Jun 03 2025

Extensions

Name clarified by Wolfdieter Lang, Nov 26 2019