A001794 Negated coefficients of Chebyshev T polynomials: [x^n](-T(n+6, x)), n >= 0.
1, 7, 32, 120, 400, 1232, 3584, 9984, 26880, 70400, 180224, 452608, 1118208, 2723840, 6553600, 15597568, 36765696, 85917696, 199229440, 458752000, 1049624576, 2387607552, 5402263552, 12163481600, 27262976000, 60850962432
Offset: 0
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Michael Albert, Mike Atkinson and Robert Brignall, The enumeration of three pattern classes using monotone grid classes, E. J. Combinat., Vol. 19, No. 3 (2012), Article P20, chapter 5.4.1.
- Takayuki Hibi, Nan Li and Hidefumi Ohsugi, The face vector of a half-open hypersimplex, arXiv preprint arXiv:1309.5155 [math.CO], 2013-2014.
- Milan Janjic, Two Enumerative Functions.
- C. W. Jones, J. C. P. Miller, J. F. C. Conn, and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A., Vol. 62, No. 2 (1946), pp. 187-203.
- John Machacek, A finite totally nonnegative Grassmannian, arXiv:2410.06177 [math.CO], 2024. See p. 11.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16).
Crossrefs
Programs
-
GAP
List([0..25],n->2^(n-2)*(n+1)*(n+2)*(n+6)/3); # Muniru A Asiru, Mar 20 2018
-
Magma
[2^(n-1)/3*Binomial(n+2,2)*(n+6) : n in [0..25]]; // Brad Clardy, Mar 08 2012
-
Maple
[seq(coeftayl((1-x)/(1-2*x)^4, x = 0, k), k=0..25)]; # Muniru A Asiru, Mar 20 2018
-
Mathematica
a[n_] := 2^(n-2)*(n+1)*(n+2)*(n+6)/3; a /@ Range[0, 20] (* Giovanni Resta, Mar 25 2017 *) LinearRecurrence[{8,-24,32,-16},{1,7,32,120},30] (* Harvey P. Dale, Oct 08 2024 *)
-
PARI
a(n) = sum(i=0, n+1, sum(k=0, i, k^2*binomial(n+1, i))); \\ Michel Marcus, Mar 25 2017
-
PARI
a(n) = - polcoeff(polchebyshev(n+6), n); \\ Michel Marcus, Mar 20 2018
Formula
a(n) = 2^(n-2)*(n+1)*(n+2)*(n+6)/3. [See a comment in A053120 on subdiagonals. - Wolfdieter Lang, Jan 03 2020]
G.f.: (1-x)/(1-2*x)^4. - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{k=0..floor((n+6)/2)} C(n+6, 2*k)*C(k, 3). - Paul Barry, May 15 2003
With a leading zero, the binomial transform of A000330. - Paul Barry, Jul 19 2003
a(n) = Sum_{i=0..n+1} (Sum{k=0..i} (k^2*binomial(n+1, i))). - Jon Perry, Feb 26 2004 [corrected by Michel Marcus, Mar 25 2017]
Binomial transform of a(n) = (2*n^3 + 6*n^2 + 7*n + 3)/3 offset 0. a(3)=120. - Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009
a(n) = (2^(n-1)/3)*binomial(n+2,2)*(n+6). - Brad Clardy, Mar 08 2012
E.g.f.: (1/3)*exp(2*x)*(3 + 15*x + 12*x^2 + 2*x^3). - Stefano Spezia, Jan 03 2020
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=0} 1/a(n) = 156*log(2)/5 - 511/25.
Sum_{n>=0} (-1)^n/a(n) = 241/25 - 108*log(3/2)/5. (End)
E.g.f.: exp(2*x)*(x^2/2 + x^3/6) (with two leading zeros). - Enrique Navarrete, Jun 03 2025
Extensions
Name clarified by Wolfdieter Lang, Nov 26 2019
Comments