cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A081279 Binomial transform of Chebyshev coefficients A001794.

Original entry on oeis.org

1, 8, 47, 238, 1101, 4788, 19899, 79866, 311769, 1189728, 4454919, 16415622, 59659173, 214229772, 761200659, 2679525522, 9353893041, 32409397944, 111534054111, 381480041502, 1297471217661, 4390248981348, 14785128121707
Offset: 0

Views

Author

Paul Barry, Mar 16 2003

Keywords

Crossrefs

Programs

  • Magma
    [(2*n^3+30*n^2 + 103*n + 81)*3^(n - 4): n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
  • Mathematica
    CoefficientList[Series[(1 - 2 x) (1 - x)^2 / (1 - 3 x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2013 *)
    LinearRecurrence[{12,-54,108,-81},{1,8,47,238},30] (* Harvey P. Dale, Jul 27 2015 *)

Formula

a(n) = (2*n^3 + 30*n^2 + 103*n + 81) * 3^(n-4).
a(n) = 12*a(n-1) -54*a(n-2) +108*a(n-3) +8*1a(n-4), a(0)=1, a(1)=8, a(2)=47, a(3)=238.
G.f.: (1-2*x)*(1-x)^2/(1-3*x)^4.

A011782 Coefficients of expansion of (1-x)/(1-2*x) in powers of x.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Lee D. Killough (killough(AT)wagner.convex.com)

Keywords

Comments

Apart from initial term, same as A000079 (powers of 2).
Number of compositions (ordered partitions) of n. - Toby Bartels, Aug 27 2003
Number of ways of putting n unlabeled items into (any number of) labeled boxes where every box contains at least one item. Also "unimodal permutations of n items", i.e., those which rise then fall. (E.g., for three items: ABC, ACB, BCA and CBA are unimodal.) - Henry Bottomley, Jan 17 2001
Number of permutations in S_n avoiding the patterns 213 and 312. - Tuwani Albert Tshifhumulo, Apr 20 2001. More generally (see Simion and Schmidt), the number of permutations in S_n avoiding (i) the 123 and 132 patterns; (ii) the 123 and 213 patterns; (iii) the 132 and 213 patterns; (iv) the 132 and 231 patterns; (v) the 132 and 312 patterns; (vi) the 213 and 231 patterns; (vii) the 213 and 312 patterns; (viii) the 231 and 312 patterns; (ix) the 231 and 321 patterns; (x) the 312 and 321 patterns.
a(n+2) is the number of distinct Boolean functions of n variables under action of symmetric group.
Number of unlabeled (1+2)-free posets. - Detlef Pauly, May 25 2003
Image of the central binomial coefficients A000984 under the Riordan array ((1-x), x*(1-x)). - Paul Barry, Mar 18 2005
Binomial transform of (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...); inverse binomial transform of A007051. - Philippe Deléham, Jul 04 2005
Also, number of rationals in [0, 1) whose binary expansions terminate after n bits. - Brad Chalfan, May 29 2006
Equals row sums of triangle A144157. - Gary W. Adamson, Sep 12 2008
Prepend A089067 with a 1, getting (1, 1, 3, 5, 13, 23, 51, ...) as polcoeff A(x); then (1, 1, 2, 4, 8, 16, ...) = A(x)/A(x^2). - Gary W. Adamson, Feb 18 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 2, 8, 32 and 128, lead to this sequence. For the corner squares these vectors lead to the companion sequence A094373. - Johannes W. Meijer, Aug 15 2010
From Paul Curtz, Jul 20 2011: (Start)
Array T(m,n) = 2*T(m,n-1) + T(m-1,n):
1, 1, 2, 4, 8, 16, ... = a(n)
1, 3, 8, 20, 48, 112, ... = A001792,
1, 5, 18, 56, 160, 432, ... = A001793,
1, 7, 32, 120, 400, 1232, ... = A001794,
1, 9, 50, 220, 840, 2912, ... = A006974, followed with A006975, A006976, gives nonzero coefficients of Chebyshev polynomials of first kind A039991 =
1,
1, 0,
2, 0, -1,
4, 0, -3, 0,
8, 0, -8, 0, 1.
T(m,n) third vertical: 2*n^2, n positive (A001105).
Fourth vertical appears in Janet table even rows, last vertical (A168342 array, A138509, rank 3, 13, = A166911)). (End)
A131577(n) and differences are:
0, 1, 2, 4, 8, 16,
1, 1, 2, 4, 8, 16, = a(n),
0, 1, 2, 4, 8, 16,
1, 1, 2, 4, 8, 16.
Number of 2-color necklaces of length 2n equal to their complemented reversal. For length 2n+1, the number is 0. - David W. Wilson, Jan 01 2012
Edges and also central terms of triangle A198069: a(0) = A198069(0,0) and for n > 0: a(n) = A198069(n,0) = A198069(n,2^n) = A198069(n,2^(n-1)). - Reinhard Zumkeller, May 26 2013
These could be called the composition numbers (see the second comment) since the equivalent sequence for partitions is A000041, the partition numbers. - Omar E. Pol, Aug 28 2013
Number of self conjugate integer partitions with exactly n parts for n>=1. - David Christopher, Aug 18 2014
The sequence is the INVERT transform of (1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...). - Gary W. Adamson, Jul 16 2015
Number of threshold graphs on n nodes [Hougardy]. - Falk Hüffner, Dec 03 2015
Number of ternary words of length n in which binary subwords appear in the form 10...0. - Milan Janjic, Jan 25 2017
a(n) is the number of words of length n over an alphabet of two letters, of which one letter appears an even number of times (the empty word of length 0 is included). See the analogous odd number case in A131577, and the Balakrishnan reference in A006516 (the 4-letter odd case), pp. 68-69, problems 2.66, 2.67 and 2.68. - Wolfdieter Lang, Jul 17 2017
Number of D-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are D-equivalent iff the positions of pattern D are identical in these paths. - Sergey Kirgizov, Apr 08 2018
Number of color patterns (set partitions) for an oriented row of length n using two or fewer colors (subsets). Two color patterns are equivalent if we permute the colors. For a(4)=8, the 4 achiral patterns are AAAA, AABB, ABAB, and ABBA; the 4 chiral patterns are the 2 pairs AAAB-ABBB and AABA-ABAA. - Robert A. Russell, Oct 30 2018
The determinant of the symmetric n X n matrix M defined by M(i,j) = (-1)^max(i,j) for 1 <= i,j <= n is equal to a(n) * (-1)^(n*(n+1)/2). - Bernard Schott, Dec 29 2018
For n>=1, a(n) is the number of permutations of length n whose cyclic representations can be written in such a way that when the cycle parentheses are removed what remains is 1 through n in natural order. For example, a(4)=8 since there are exactly 8 permutations of this form, namely, (1 2 3 4), (1)(2 3 4), (1 2)(3 4), (1 2 3)(4), (1)(2)(3 4), (1)(2 3)(4), (1 2)(3)(4), and (1)(2)(3)(4). Our result follows readily by conditioning on k, the number of parentheses pairs of the form ")(" in the cyclic representation. Since there are C(n-1,k) ways to insert these in the cyclic representation and since k runs from 0 to n-1, we obtain a(n) = Sum_{k=0..n-1} C(n-1,k) = 2^(n-1). - Dennis P. Walsh, May 23 2020
Maximum number of preimages that a permutation of length n + 1 can have under the consecutive-231-avoiding stack-sorting map. - Colin Defant, Aug 28 2020
a(n) is the number of occurrences of the empty set {} in the von Neumann ordinals from 0 up to n. Each ordinal k is defined as the set of all smaller ordinals: 0 = {}, 1 = {0}, 2 = {0,1}, etc. Since {} is the foundational element of all ordinals, the total number of times it appears grows as powers of 2. - Kyle Wyonch, Mar 30 2025

Examples

			G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 16*x^5 + 32*x^6 + 64*x^7 + 128*x^8 + ...
    ( -1   1  -1)
det (  1   1   1)  = 4
    ( -1  -1  -1)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
  • S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7
  • Xavier Merlin, Methodix Algèbre, Ellipses, 1995, p. 153.

Crossrefs

Sequences with g.f.'s of the form ((1-x)/(1-2*x))^k: this sequence (k=1), A045623 (k=2), A058396 (k=3), A062109 (k=4), A169792 (k=5), A169793 (k=6), A169794 (k=7), A169795 (k=8), A169796 (k=9), A169797 (k=10).
Cf. A005418 (unoriented), A122746(n-3) (chiral), A016116 (achiral).
Row sums of triangle A100257.
A row of A160232.
Row 2 of A278984.

Programs

  • Haskell
    a011782 n = a011782_list !! n
    a011782_list = 1 : scanl1 (+) a011782_list
    -- Reinhard Zumkeller, Jul 21 2013
    
  • Magma
    [Floor((1+2^n)/2): n in [0..35]]; // Vincenzo Librandi, Aug 21 2011
    
  • Maple
    A011782:= n-> ceil(2^(n-1)): seq(A011782(n), n=0..50); # Wesley Ivan Hurt, Feb 21 2015
    with(PolynomialTools):  A011782:=seq(coeftayl((1-x)/(1-2*x), x = 0, k),k=0..10^2); # Muniru A Asiru, Sep 26 2017
  • Mathematica
    f[s_] := Append[s, Ceiling[Plus @@ s]]; Nest[f, {1}, 32] (* Robert G. Wilson v, Jul 07 2006 *)
    CoefficientList[ Series[(1-x)/(1-2x), {x, 0, 32}], x] (* Robert G. Wilson v, Jul 07 2006 *)
    Table[Sum[StirlingS2[n, k], {k,0,2}], {n, 0, 30}] (* Robert A. Russell, Apr 25 2018 *)
    Join[{1},NestList[2#&,1,40]] (* Harvey P. Dale, Dec 06 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, 2^(n-1))};
    
  • PARI
    Vec((1-x)/(1-2*x) + O(x^30)) \\ Altug Alkan, Oct 31 2015
    
  • Python
    def A011782(n): return 1 if n == 0 else 2**(n-1) # Chai Wah Wu, May 11 2022
  • Sage
    [sum(stirling_number2(n,j) for j in (0..2)) for n in (0..35)] # G. C. Greubel, Jun 02 2020
    

Formula

a(0) = 1, a(n) = 2^(n-1).
G.f.: (1 - x) / (1 - 2*x) = 1 / (1 - x / (1 - x)). - Michael Somos, Apr 18 2012
E.g.f.: cosh(z)*exp(z) = (exp(2*z) + 1)/2.
a(0) = 1 and for n>0, a(n) = sum of all previous terms.
a(n) = Sum_{k=0..n} binomial(n, 2*k). - Paul Barry, Feb 25 2003
a(n) = Sum_{k=0..n} binomial(n,k)*(1+(-1)^k)/2. - Paul Barry, May 27 2003
a(n) = floor((1+2^n)/2). - Toby Bartels (toby+sloane(AT)math.ucr.edu), Aug 27 2003
G.f.: Sum_{i>=0} x^i/(1-x)^i. - Jon Perry, Jul 10 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k+1, n-k)*binomial(2*k, k). - Paul Barry, Mar 18 2005
a(n) = Sum_{k=0..floor(n/2)} A055830(n-k, k). - Philippe Deléham, Oct 22 2006
a(n) = Sum_{k=0..n} A098158(n,k). - Philippe Deléham, Dec 04 2006
G.f.: 1/(1 - (x + x^2 + x^3 + ...)). - Geoffrey Critzer, Aug 30 2008
a(n) = A000079(n) - A131577(n).
a(n) = A173921(A000079(n)). - Reinhard Zumkeller, Mar 04 2010
a(n) = Sum_{k=2^n..2^(n+1)-1} A093873(k)/A093875(k), sums of rows of the full tree of Kepler's harmonic fractions. - Reinhard Zumkeller, Oct 17 2010
E.g.f.: (exp(2*x)+1)/2 = (G(0) + 1)/2; G(k) = 1 + 2*x/(2*k+1 - x*(2*k+1)/(x + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2011
A051049(n) = p(n+1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Apr 18 2012
A008619(n) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Apr 18 2012
INVERT transform is A122367. MOBIUS transform is A123707. EULER transform of A059966. PSUM transform is A000079. PSUMSIGN transform is A078008. BINOMIAL transform is A007051. REVERT transform is A105523. A002866(n) = a(n)*n!. - Michael Somos, Apr 18 2012
G.f.: U(0), where U(k) = 1 + x*(k+3) - x*(k+2)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 10 2012
a(n) = A000041(n) + A056823(n). - Omar E. Pol, Aug 31 2013
E.g.f.: E(0), where E(k) = 1 + x/( 2*k+1 - x/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 25 2013
G.f.: 1 + x/(1 + x)*( 1 + 3*x/(1 + 3*x)*( 1 + 5*x/(1 + 5*x)*( 1 + 7*x/(1 + 7*x)*( 1 + ... )))). - Peter Bala, May 27 2017
a(n) = Sum_{k=0..2} stirling2(n, k).
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=2. - Robert A. Russell, Apr 25 2018
a(n) = A053120(n, n), n >= 0, (main diagonal of triangle of Chebyshev's T polynomials). - Wolfdieter Lang, Nov 26 2019

Extensions

Additional comments from Emeric Deutsch, May 14 2001
Typo corrected by Philippe Deléham, Oct 25 2008

A000330 Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + ... + n^2 = n*(n+1)*(2*n+1)/6.

Original entry on oeis.org

0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370
Offset: 0

Views

Author

Keywords

Comments

The sequence contains exactly one square greater than 1, namely 4900 (according to Gardner). - Jud McCranie, Mar 19 2001, Mar 22 2007 [This is a result from Watson. - Charles R Greathouse IV, Jun 21 2013] [See A351830 for further related comments and references.]
Number of rhombi in an n X n rhombus. - Matti De Craene (Matti.DeCraene(AT)rug.ac.be), May 14 2000
Number of acute triangles made from the vertices of a regular n-polygon when n is odd (cf. A007290). - Sen-Peng Eu, Apr 05 2001
Gives number of squares with sides parallel to the axes formed from an n X n square. In a 1 X 1 square, one is formed. In a 2 X 2 square, five squares are formed. In a 3 X 3 square, 14 squares are formed and so on. - Kristie Smith (kristie10spud(AT)hotmail.com), Apr 16 2002; edited by Eric W. Weisstein, Mar 05 2025
a(n-1) = B_3(n)/3, where B_3(x) = x(x-1)(x-1/2) is the third Bernoulli polynomial. - Michael Somos, Mar 13 2004
Number of permutations avoiding 13-2 that contain the pattern 32-1 exactly once.
Since 3*r = (r+1) + r + (r-1) = T(r+1) - T(r-2), where T(r) = r-th triangular number r*(r+1)/2, we have 3*r^2 = r*(T(r+1) - T(r-2)) = f(r+1) - f(r-1) ... (i), where f(r) = (r-1)*T(r) = (r+1)*T(r-1). Summing over n, the right hand side of relation (i) telescopes to f(n+1) + f(n) = T(n)*((n+2) + (n-1)), whence the result Sum_{r=1..n} r^2 = n*(n+1)*(2*n+1)/6 immediately follows. - Lekraj Beedassy, Aug 06 2004
Also as a(n) = (1/6)*(2*n^3 + 3*n^2 + n), n > 0: structured trigonal diamond numbers (vertex structure 5) (cf. A006003 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of triples of integers from {1, 2, ..., n} whose last component is greater than or equal to the others.
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
Sum of the first n positive squares. - Cino Hilliard, Jun 18 2007
Maximal number of cubes of side 1 in a right pyramid with a square base of side n and height n. - Pasquale CUTOLO (p.cutolo(AT)inwind.it), Jul 09 2007
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
We also have the identity 1 + (1+4) + (1+4+9) + ... + (1+4+9+16+ ... + n^2) = n(n+1)(n+2)(n+(n+1)+(n+2))/36; ... and in general the k-fold nested sum of squares can be expressed as n(n+1)...(n+k)(n+(n+1)+...+(n+k))/((k+2)!(k+1)/2). - Alexander R. Povolotsky, Nov 21 2007
The terms of this sequence are coefficients of the Engel expansion of the following converging sum: 1/(1^2) + (1/1^2)*(1/(1^2+2^2)) + (1/1^2)*(1/(1^2+2^2))*(1/(1^2+2^2+3^2)) + ... - Alexander R. Povolotsky, Dec 10 2007
Convolution of A000290 with A000012. - Sergio Falcon, Feb 05 2008
Hankel transform of binomial(2*n-3, n-1) is -a(n). - Paul Barry, Feb 12 2008
Starting (1, 5, 14, 30, ...) = binomial transform of [1, 4, 5, 2, 0, 0, 0, ...]. - Gary W. Adamson, Jun 13 2008
Starting (1,5,14,30,...) = second partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} binomial(n+2,i+2)*b(i), where b(i)=1,2,0,0,0,... - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
Convolution of A001477 with A005408: a(n) = Sum_{k=0..n} (2*k+1)*(n-k). - Reinhard Zumkeller, Mar 07 2009
Sequence of the absolute values of the z^1 coefficients of the polynomials in the GF1 denominators of A156921. See A157702 for background information. - Johannes W. Meijer, Mar 07 2009
The sequence is related to A000217 by a(n) = n*A000217(n) - Sum_{i=0..n-1} A000217(i) and this is the case d = 1 in the identity n^2*(d*n-d+2)/2 - Sum_{i=0..n-1} i*(d*i-d+2)/2 = n*(n+1)(2*d*n-2*d+3)/6, or also the case d = 0 in n^2*(n+2*d+1)/2 - Sum_{i=0..n-1} i*(i+2*d+1)/2 = n*(n+1)*(2*n+3*d+1)/6. - Bruno Berselli, Apr 21 2010, Apr 03 2012
a(n)/n = k^2 (k = integer) for n = 337; a(337) = 12814425, a(n)/n = 38025, k = 195, i.e., the number k = 195 is the quadratic mean (root mean square) of the first 337 positive integers. There are other such numbers -- see A084231 and A084232. - Jaroslav Krizek, May 23 2010
Also the number of moves to solve the "alternate coins game": given 2n+1 coins (n+1 Black, n White) set alternately in a row (BWBW...BWB) translate (not rotate) a pair of adjacent coins at a time (1 B and 1 W) so that at the end the arrangement shall be BBBBB..BW...WWWWW (Blacks separated by Whites). Isolated coins cannot be moved. - Carmine Suriano, Sep 10 2010
From J. M. Bergot, Aug 23 2011: (Start)
Using four consecutive numbers n, n+1, n+2, and n+3 take all possible pairs (n, n+1), (n, n+2), (n, n+3), (n+1, n+2), (n+1, n+3), (n+2, n+3) to create unreduced Pythagorean triangles. The sum of all six areas is 60*a(n+1).
Using three consecutive odd numbers j, k, m, (j+k+m)^3 - (j^3 + k^3 + m^3) equals 576*a(n) = 24^2*a(n) where n = (j+1)/2. (End)
From Ant King, Oct 17 2012: (Start)
For n > 0, the digital roots of this sequence A010888(a(n)) form the purely periodic 27-cycle {1, 5, 5, 3, 1, 1, 5, 6, 6, 7, 2, 2, 9, 7, 7, 2, 3, 3, 4, 8, 8, 6, 4, 4, 8, 9, 9}.
For n > 0, the units' digits of this sequence A010879(a(n)) form the purely periodic 20-cycle {1, 5, 4, 0, 5, 1, 0, 4, 5, 5, 6, 0, 9, 5, 0, 6, 5, 9, 0, 0}. (End)
Length of the Pisano period of this sequence mod n, n>=1: 1, 4, 9, 8, 5, 36, 7, 16, 27, 20, 11, 72, 13, 28, 45, 32, 17, 108, 19, 40, ... . - R. J. Mathar, Oct 17 2012
Sum of entries of n X n square matrix with elements min(i,j). - Enrique Pérez Herrero, Jan 16 2013
The number of intersections of diagonals in the interior of regular n-gon for odd n > 1 divided by n is a square pyramidal number; that is, A006561(2*n+1)/(2*n+1) = A000330(n-1) = (1/6)*n*(n-1)*(2*n-1). - Martin Renner, Mar 06 2013
For n > 1, a(n)/(2n+1) = A024702(m), for n such that 2n+1 = prime, which results in 2n+1 = A000040(m). For example, for n = 8, 2n+1 = 17 = A000040(7), a(8) = 204, 204/17 = 12 = A024702(7). - Richard R. Forberg, Aug 20 2013
A formula for the r-th successive summation of k^2, for k = 1 to n, is (2*n+r)*(n+r)!/((r+2)!*(n-1)!) (H. W. Gould). - Gary Detlefs, Jan 02 2014
The n-th square pyramidal number = the n-th triangular dipyramidal number (Johnson 12), which is the sum of the n-th + (n-1)-st tetrahedral numbers. E.g., the 3rd tetrahedral number is 10 = 1+3+6, the 2nd is 4 = 1+3. In triangular "dipyramidal form" these numbers can be written as 1+3+6+3+1 = 14. For "square pyramidal form", rebracket as 1+(1+3)+(3+6) = 14. - John F. Richardson, Mar 27 2014
Beukers and Top prove that no square pyramidal number > 1 equals a tetrahedral number A000292. - Jonathan Sondow, Jun 21 2014
Odd numbered entries are related to dissections of polygons through A100157. - Tom Copeland, Oct 05 2014
From Bui Quang Tuan, Apr 03 2015: (Start)
We construct a number triangle from the integers 1, 2, 3, ..., n as follows. The first column contains 2*n-1 integers 1. The second column contains 2*n-3 integers 2, ... The last column contains only one integer n. The sum of all the numbers in the triangle is a(n).
Here is an example with n = 5:
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1
(End)
The Catalan number series A000108(n+3), offset 0, gives Hankel transform revealing the square pyramidal numbers starting at 5, A000330(n+2), offset 0 (empirical observation). - Tony Foster III, Sep 05 2016; see Dougherty et al. link p. 2. - Andrey Zabolotskiy, Oct 13 2016
Number of floating point additions in the factorization of an (n+1) X (n+1) real matrix by Gaussian elimination as e.g. implemented in LINPACK subroutines sgefa.f or dgefa.f. The number of multiplications is given by A007290. - Hugo Pfoertner, Mar 28 2018
The Jacobi polynomial P(n-1,-n+2,2,3) or equivalently the sum of dot products of vectors from the first n rows of Pascal's triangle (A007318) with the up-diagonal Chebyshev T coefficient vector (1,3,2,0,...) (A053120) or down-diagonal vector (1,-7,32,-120,400,...) (A001794). a(5) = 1 + (1,1).(1,3) + (1,2,1).(1,3,2) + (1,3,3,1).(1,3,2,0) + (1,4,6,4,1).(1,3,2,0,0) = (1 + (1,1).(1,-7) + (1,2,1).(1,-7,32) + (1,3,3,1).(1,-7,32,-120) + (1,4,6,4,1).(1,-7,32,-120,400))*(-1)^(n-1) = 55. - Richard Turk, Jul 03 2018
Coefficients in the terminating series identity 1 - 5*n/(n + 4) + 14*n*(n - 1)/((n + 4)*(n + 5)) - 30*n*(n - 1)*(n - 2)/((n + 4)*(n + 5)*(n + 6)) + ... = 0 for n = 1,2,3,.... Cf. A002415 and A108674. - Peter Bala, Feb 12 2019
n divides a(n) iff n == +- 1 (mod 6) (see A007310). (See De Koninck reference.) Examples: a(11) = 506 = 11 * 46, and a(13) = 819 = 13 * 63. - Bernard Schott, Jan 10 2020
For n > 0, a(n) is the number of ternary words of length n+2 having 3 letters equal to 2 and 0 only occurring as the last letter. For example, for n=2, the length 4 words are 2221,2212,2122,1222,2220. - Milan Janjic, Jan 28 2020
Conjecture: Every integer can be represented as a sum of three generalized square pyramidal numbers. A related conjecture is given in A336205 corresponding to pentagonal case. A stronger version of these conjectures is that every integer can be expressed as a sum of three generalized r-gonal pyramidal numbers for all r >= 3. In here "generalized" means negative indices are included. - Altug Alkan, Jul 30 2020
The natural number y is a term if and only if y = a(floor((3 * y)^(1/3))). - Robert Israel, Dec 04 2024
Also the number of directed bishop moves on an n X n chessboard, where two moves are considered the same if one can be obtained from the other by a rotation of the board. Reflections are ignored. Equivalently, number of directed bishop moves on an n X n chessboard, where two moves are considered the same if one can be obtained from the other by an axial reflection of the board (horizontal or vertical). Rotations and diagonal reflections are ignored. - Hilko Koning, Aug 22 2025

Examples

			G.f. = x + 5*x^2 + 14*x^3 + 30*x^4 + 55*x^5 + 91*x^6 + 140*x^7 + 204*x^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover Publications, NY, 1964, p. 194.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 215,223.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 122, see #19 (3(1)), I(n); p. 155.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 47-49.
  • H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.165).
  • J. M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 310, pp. 46-196, Ellipses, Paris, 2004.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
  • M. Gardner, Fractal Music, Hypercards and More, Freeman, NY, 1991, p. 293.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 293.
  • M. Holt, Math puzzles and games, Walker Publishing Company, 1977, p. 2 and p. 89.
  • Simon Singh, The Simpsons and Their Mathematical Secrets. London: Bloomsbury Publishing PLC (2013): 188.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 126.

Crossrefs

Sums of 2 consecutive terms give A005900.
Column 0 of triangle A094414.
Column 1 of triangle A008955.
Right side of triangle A082652.
Row 2 of array A103438.
Partial sums of A000290.
Cf. similar sequences listed in A237616 and A254142.
Cf. |A084930(n, 1)|.
Cf. A253903 (characteristic function).
Cf. A034705 (differences of any two terms).

Programs

  • GAP
    List([0..30], n-> n*(n+1)*(2*n+1)/6); # G. C. Greubel, Dec 31 2019
  • Haskell
    a000330 n = n * (n + 1) * (2 * n + 1) `div` 6
    a000330_list = scanl1 (+) a000290_list
    -- Reinhard Zumkeller, Nov 11 2012, Feb 03 2012
    
  • Magma
    [n*(n+1)*(2*n+1)/6: n in [0..50]]; // Wesley Ivan Hurt, Jun 28 2014
    
  • Magma
    [0] cat [((2*n+3)*Binomial(n+2,2))/3: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
    
  • Maple
    A000330 := n -> n*(n+1)*(2*n+1)/6;
    a := n->(1/6)*n*(n+1)*(2*n+1): seq(a(n),n=0..53); # Emeric Deutsch
    with(combstruct): ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m*2), m=1..45) ; # Zerinvary Lajos, Jan 02 2008
    nmax := 44; for n from 0 to nmax do fz(n) := product( (1-(2*m-1)*z)^(n+1-m) , m=1..n); c(n) := abs(coeff(fz(n),z,1)); end do: a := n-> c(n): seq(a(n), n=0..nmax); # Johannes W. Meijer, Mar 07 2009
  • Mathematica
    Table[Binomial[w+2, 3] + Binomial[w+1, 3], {w, 0, 30}]
    CoefficientList[Series[x(1+x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
    Accumulate[Range[0,50]^2] (* Harvey P. Dale, Sep 25 2014 *)
  • Maxima
    A000330(n):=binomial(n+2,3)+binomial(n+1,3)$
    makelist(A000330(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    {a(n) = n * (n+1) * (2*n+1) / 6};
    
  • PARI
    upto(n) = [x*(x+1)*(2*x+1)/6 | x<-[0..n]] \\ Cino Hilliard, Jun 18 2007, edited by M. F. Hasler, Jan 02 2024
    
  • Python
    a=lambda n: (n*(n+1)*(2*n+1))//6 # Indranil Ghosh, Jan 04 2017
    
  • Sage
    [n*(n+1)*(2*n+1)/6 for n in (0..30)] # G. C. Greubel, Dec 31 2019
    

Formula

G.f.: x*(1+x)/(1-x)^4. - Simon Plouffe (in his 1992 dissertation: generating function for sequence starting at a(1))
E.g.f.: (x + 3*x^2/2 + x^3/3)*exp(x).
a(n) = n*(n+1)*(2*n+1)/6 = binomial(n+2, 3) + binomial(n+1, 3).
2*a(n) = A006331(n). - N. J. A. Sloane, Dec 11 1999
Can be extended to Z with a(n) = -a(-1-n) for all n in Z.
a(n) = A002492(n)/4. - Paul Barry, Jul 19 2003
a(n) = (((n+1)^4 - n^4) - ((n+1)^2 - n^2))/12. - Xavier Acloque, Oct 16 2003
From Alexander Adamchuk, Oct 26 2004: (Start)
a(n) = sqrt(A271535(n)).
a(n) = (Sum_{k=1..n} Sum_{j=1..n} Sum_{i=1..n} (i*j*k)^2)^(1/3). (End)
a(n) = Sum_{i=1..n} i*(2*n-2*i+1); sum of squares gives 1 + (1+3) + (1+3+5) + ... - Jon Perry, Dec 08 2004
a(n+1) = A000217(n+1) + 2*A000292(n). - Creighton Dement, Mar 10 2005
Sum_{n>=1} 1/a(n) = 6*(3-4*log(2)); Sum_{n>=1} (-1)^(n+1)*1/a(n) = 6*(Pi-3). - Philippe Deléham, May 31 2005
Sum of two consecutive tetrahedral (or pyramidal) numbers a(n) = A000292(n-1) + A000292(n). - Alexander Adamchuk, May 17 2006
Euler transform of length-2 sequence [ 5, -1 ]. - Michael Somos, Sep 04 2006
a(n) = a(n-1) + n^2. - Rolf Pleisch, Jul 22 2007
a(n) = A132121(n,0). - Reinhard Zumkeller, Aug 12 2007
a(n) = binomial(n, 2) + 2*binomial(n, 3). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009, corrected by M. F. Hasler, Jan 02 2024
a(n) = A168559(n) + 1 for n > 0. - Reinhard Zumkeller, Feb 03 2012
a(n) = Sum_{i=1..n} J_2(i)*floor(n/i), where J_2 is A007434. - Enrique Pérez Herrero, Feb 26 2012
a(n) = s(n+1, n)^2 - 2*s(n+1, n-1), where s(n, k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012
a(n) = A001477(n) + A000217(n) + A007290(n+2) + 1. - J. M. Bergot, May 31 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 2. - Ant King, Oct 17 2012
a(n) = Sum_{i = 1..n} Sum_{j = 1..n} min(i,j). - Enrique Pérez Herrero, Jan 15 2013
a(n) = A000217(n) + A007290(n+1). - Ivan N. Ianakiev, May 10 2013
a(n) = (A047486(n+2)^3 - A047486(n+2))/24. - Richard R. Forberg, Dec 25 2013
a(n) = Sum_{i=0..n-1} (n-i)*(2*i+1), with a(0) = 0. After 0, row sums of the triangle in A101447. - Bruno Berselli, Feb 10 2014
a(n) = n + 1 + Sum_{i=1..n+1} (i^2 - 2i). - Wesley Ivan Hurt, Feb 25 2014
a(n) = A000578(n+1) - A002412(n+1). - Wesley Ivan Hurt, Jun 28 2014
a(n) = Sum_{i = 1..n} Sum_{j = i..n} max(i,j). - Enrique Pérez Herrero, Dec 03 2014
a(n) = A055112(n)/6, see Singh (2013). - Alonso del Arte, Feb 20 2015
For n >= 2, a(n) = A028347(n+1) + A101986(n-2). - Bui Quang Tuan, Apr 03 2015
For n > 0: a(n) = A258708(n+3,n-1). - Reinhard Zumkeller, Jun 23 2015
a(n) = A175254(n) + A072481(n), n >= 1. - Omar E. Pol, Aug 12 2015
a(n) = A000332(n+3) - A000332(n+1). - Antal Pinter, Dec 27 2015
Dirichlet g.f.: zeta(s-3)/3 + zeta(s-2)/2 + zeta(s-1)/6. - Ilya Gutkovskiy, Jun 26 2016
a(n) = A080851(2,n-1). - R. J. Mathar, Jul 28 2016
a(n) = (A005408(n) * A046092(n))/12 = (2*n+1)*(2*n*(n+1))/12. - Bruce J. Nicholson, May 18 2017
12*a(n) = (n+1)*A001105(n) + n*A001105(n+1). - Bruno Berselli, Jul 03 2017
a(n) = binomial(n-1, 1) + binomial(n-1, 2) + binomial(n, 3) + binomial(n+1, 2) + binomial(n+1, 3). - Tony Foster III, Aug 24 2018
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Nathan Fox, Dec 04 2019
Let T(n) = A000217(n), the n-th triangular number. Then a(n) = (T(n)+1)^2 + (T(n)+2)^2 + ... + (T(n)+n)^2 - (n+2)*T(n)^2. - Charlie Marion, Dec 31 2019
a(n) = 2*n - 1 - a(n-2) + 2*a(n-1). - Boštjan Gec, Nov 09 2023
a(n) = 2/(2*n)! * Sum_{j = 1..n} (-1)^(n+j) * j^(2*n+2) * binomial(2*n, n-j). Cf. A060493. - Peter Bala, Mar 31 2025

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A053120 Triangle of coefficients of Chebyshev's T(n,x) polynomials (powers of x in increasing order).

Original entry on oeis.org

1, 0, 1, -1, 0, 2, 0, -3, 0, 4, 1, 0, -8, 0, 8, 0, 5, 0, -20, 0, 16, -1, 0, 18, 0, -48, 0, 32, 0, -7, 0, 56, 0, -112, 0, 64, 1, 0, -32, 0, 160, 0, -256, 0, 128, 0, 9, 0, -120, 0, 432, 0, -576, 0, 256, -1, 0, 50, 0, -400, 0, 1120, 0, -1280, 0, 512, 0, -11, 0, 220, 0, -1232, 0, 2816, 0, -2816, 0, 1024
Offset: 0

Views

Author

Keywords

Comments

Row sums (signed triangle): A000012 (powers of 1). Row sums (unsigned triangle): A001333(n).
From Wolfdieter Lang, Oct 21 2013: (Start)
The row polynomials T(n,x) equal (S(n,2*x) - S(n-2,2*x))/2, n >= 0, with the row polynomials S from A049310, with S(-1,x) = 0, and S(-2,x) = -1.
The zeros of T(n,x) are x(n,k) = cos((2*k+1)*Pi/(2*n)), k = 0, 1, ..., n-1, n >= 1. (End)
From Wolfdieter Lang, Jan 03 2020 and Paul Weisenhorn: (Start)
The (sub)diagonal sequences {D_{2*k}(m)}{m >= 0}, for k >= 0, have o.g.f. GD{2*k}(x) = (-1)^k*(1-x)/(1-2*x)^(k+1), for k >= 0, and GD_{2*k+1}(x) = 0, for k >= 0. This follows from their o.g.f. GGD(z, x) := Sum_{k>=0} GD_k(x)*z^n which is obtained from the o.g.f. of the T-triangle GT(z, x) = (1-x*z)/(1 - 2*x + z^2) (see the formula section) by GGD(z, x) = GT(z, x/z).
The explicit form is then D_{2*k}(m) = (-1)^k, for m = 0, and
(-1)^k*(2*k+m)*2^(m-1)*risefac(k+1, m-1)/m!, for m >= 1, with the rising factorial risefac(x, n). (End)

Examples

			The triangle a(n,m) begins:
n\m  0  1   2    3     4    5     6     7      8    9   10...
0:   1
1:   0  1
2:  -1  0   2
3:   0 -3   0    4
4:   1  0  -8    0     8
5:   0  5   0  -20     0   16
6:  -1  0  18    0   -48    0    32
7:   0 -7   0   56     0 -112     0    64
8:   1  0 -32    0   160    0  -256     0    128
9:   0  9   0 -120     0  432     0  -576      0  256
10: -1  0  50    0  -400    0  1120     0  -1280    0  512
... Reformatted and extended - _Wolfdieter Lang_, Oct 21 2013
E.g., the fourth row (n=3) corresponds to the polynomial T(3,x) = -3*x + 4*x^3.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964. Tenth printing, Wiley, 2002 (also electronically available), p. 795.
  • F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg 1994 pp. 77, 105.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 22, page 196.
  • TableCurve 2D, Automated curve fitting and equation discovery, Version 5.01 for Windows, User's Manual, Chebyshev Series Polynomials and Rationals, pages 12-21 - 12-24, SYSTAT Software, Inc., Richmond, WA, 2002.

Crossrefs

The first nonzero (sub)diagonal sequences are A011782, -A001792, A001793(n+1), -A001794, A006974, -A006975, A006976, -A209404.

Programs

  • Julia
    using Nemo
    function A053120Row(n)
        R, x = PolynomialRing(ZZ, "x")
        p = chebyshev_t(n, x)
        [coeff(p, j) for j in 0:n] end
    for n in 0:6 A053120Row(n) |> println end # Peter Luschny, Mar 13 2018
    
  • Magma
    &cat[ Coefficients(ChebyshevT(n)): n in [0..11] ]; // Klaus Brockhaus, Mar 08 2008
    
  • Maple
    with(orthopoly) ;
    A053120 := proc(n,k)
        T(n,x) ;
        coeftayl(%,x=0,k) ;
    end proc: # R. J. Mathar, Jun 30 2013
    T := (n, x) -> `if`(n = 0, 1, add((-1)^(n - k) * (n/(2*k))*binomial(k, n - k) *(2*x)^(2*k - n), k = 1 ..n)):
    seq(seq(coeff(T(n, x), x, k), k = 0..n), n = 0..11); # Peter Luschny, Sep 20 2022
  • Mathematica
    t[n_, k_] := Coefficient[ ChebyshevT[n, x], x, k]; Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, Jan 16 2012 *)
  • PARI
    for(n=0,5,P=polchebyshev(n);for(k=0,n,print1(polcoeff(P,k)", "))) \\ Charles R Greathouse IV, Jan 16 2012
    
  • SageMath
    def f(n,k): # f = A039991
        if (n<2 and k==0): return 1
        elif (k<0 or k>n): return 0
        else: return 2*f(n-1, k) - f(n-2, k-2)
    def A053120(n,k): return f(n, n-k)
    flatten([[A053120(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 10 2022

Formula

T(n, m) = A039991(n, n-m).
G.f. for row polynomials T(n,x) (signed triangle): (1-x*z)/(1-2*x*z+z^2). If unsigned: (1-x*z)/(1-2*x*z-z^2).
T(n, m) := 0 if n < m or n+m odd; T(n, m) = (-1)^(n/2) if m=0 (n even); otherwise T(n, m) = ((-1)^((n+m)/2 + m))*(2^(m-1))*n*binomial((n+m)/2-1, m-1)/m.
Recursion for n >= 2: T(n, m) = T*a(n-1, m-1) - T(n-2, m), T(n, m)=0 if n < m, T(n, -1) := 0, T(0, 0) = T(1, 1) = 1.
G.f. for m-th column (signed triangle): 1/(1+x^2) if m=0, otherwise (2^(m-1))*(x^m)*(1-x^2)/(1+x^2)^(m+1).
From G. C. Greubel, Aug 10 2022: (Start)
Sum_{k=0..floor(n/2)} T(n-k, k) = A000007(n).
T(2*n, n) = i^n * A036909(n/2) * (1+(-1)^n)/2 + [n=0]/3. (End)
T(n, k) = [x^k] T(n, x) for n >= 1, where T(n, x) = Sum_{k=1..n}(-1)^(n - k)*(n/ (2*k))*binomial(k, n - k)*(2*x)^(2*k - n). - Peter Luschny, Sep 20 2022

A001793 a(n) = n*(n+3)*2^(n-3).

Original entry on oeis.org

1, 5, 18, 56, 160, 432, 1120, 2816, 6912, 16640, 39424, 92160, 212992, 487424, 1105920, 2490368, 5570560, 12386304, 27394048, 60293120, 132120576, 288358400, 627048448, 1358954496, 2936012800, 6325010432, 13589544960, 29125246976
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Chebyshev T polynomials: the subdiagonal A053120(n+3, n-1), for n > = 1. [rewritten by Wolfdieter Lang, Nov 25 2019]
Number of 132-avoiding permutations of [n+3] containing exactly two 123 patterns. - Emeric Deutsch, Jul 13 2001
Number of Dyck paths of semilength n+2 having pyramid weight n+1 (for pyramid weight see Denise and Simion). Example: a(2)=5 because the Dyck paths of semilength 4 having pyramid weight 3 are: (ud)u(ud)(ud)d, u(ud)(ud)d(ud), u(ud)(ud)(ud)d, u(ud)(uudd)d and u(uudd)(ud)d [here u=(1,1), d=(1,-1) and the maximal pyramids, of total length 3, are shown between parentheses]. - Emeric Deutsch, Mar 10 2004
a(n) is the number of dissections of a regular (n+3)-gon using n-1 noncrossing diagonals such that every piece of the dissection contains at least one non-base side of the (n+3)-gon. (One side of the (n+3)-gon is designated the base.) - David Callan, Mar 23 2004
If X_1,X_2,...,X_n are 2-blocks of a (2n+1)-set X then a(n) is the number of (n+2)-subsets of X intersecting each X_i, (i=1..n). - Milan Janjic, Nov 18 2007
The second corrector line for transforming 2^n offset 0 with a leading 1 into the Fibonacci sequence. - Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009
Sum of all nodes of all integer compositions of n, see example. - Olivier Gérard, Oct 22 2011
Number of compositions of 2n with exactly two odd summands (see example). - Mamuka Jibladze, Sep 04 2013
4*a(n) is the number of North-East paths from (0,0) to (n+2,n+2) with exactly two east steps below y = x-1 or above y = x+1. It is related to paired pattern P_1 and P_6 in Pan and Remmel's link. - Ran Pan, Feb 04 2016
From Paul Weisenhorn, Oct 18 2019: (Start)
The polynomials S(n,x)= Sum_(k>=1) b(n,k)*x^k has the recurrence relation S(n+2,x)=2*S(n+1,x))-x*S(n) with S(1,x)=1, S(2,x)=2-x and are generated by the coefficients b(n,k). b(n,k) is defined by b(n,k)=Sum_(j=1..k) binomials(k+1,j)*b(n-j,k) or by b(n,k)=((n-2+k)!*(n-1+2k)*2^n)/(4*(n-1)!*k!). b(n,1)=A001792, b(n,2)=A001793, b(n,3)=A001794, b(n,4)=A006974, b(n,5)=A006975, b(n,6)=A006976, b(n,7)=A209404.
The general formula for the sequences with k>=1: a(n)=((n-2+k)!*(n-1+2k)*2^n)/(4*(n-1)!*k!) with n >= 1. (End) [See a comment in A053120 on subdiagonal sequences. - Wolfdieter Lang, Jan 03 2020]

Examples

			a(2)=5 since 32415, 32451, 34125, 42135 and 52134 are the only 132-avoiding permutations of 12345 containing exactly two increasing subsequences of length 3.
a(4)=56: the compositions of 4 are 4, 3+1, 1+3, 2+2, 2+1+1, 1+2+1, 1+1+2, 1+1+1+1, the corresponding nodes (partial sums) are {0, 4}, {0, 3, 4}, {0, 1, 4}, {0, 2, 4}, {0, 2, 3, 4}, {0, 1, 3, 4}, {0, 1, 2, 4}, {0, 1, 2, 3, 4}, with individual sums {4, 7, 5, 6, 9, 8, 7, 10} and total 56. - _Olivier Gérard_, Oct 22 2011
The a(3)=18 compositions of 2*3=6 with two odd summands are 5+1, 1+5, 3+3, 4+1+1, 1+4+1, 1+1+4, 3+2+1, 3+1+2, 2+3+1, 2+1+3, 1+3+2, 1+2+3, 2+2+1+1, 2+1+2+1, 2+1+1+2, 1+2+2+1, 1+2+1+2, 1+1+2+2. - _Mamuka Jibladze_, Sep 04 2013
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A039991(n+3, 4) = A055252(n, 1).
Cf. A053120.

Programs

Formula

G.f.: x*(1-x)/(1-2*x)^3. Binomial transform of squares [1, 4, 9, ...].
a(n) = Sum_{k=0..floor((n+4)/2)} C(n+4, 2k)*C(k, 2). - Paul Barry, May 15 2003
With two leading zeros, binomial transform of quarter-squares A002620. - Paul Barry, May 27 2003
a(n) = Sum_{k=0..n+2} C(n+2, k) * floor(k^2/4). - Paul Barry, May 27 2003
a(n) = Sum_{i=0..j} binomial(i+1, 2)*binomial(j, i). - Jon Perry, Feb 26 2004
With one leading zero, binomial transform of triangular numbers A000217. - Philippe Deléham, Aug 02 2005
a(n) = Sum_{k=0..n+1} (-1)^(n-k+1)*C(k, n-k+1)*k*C(2k, k)/2. - Paul Barry, Oct 07 2005
Left-shifted sequence is binomial transform of left-shifted squares (A000290). - Franklin T. Adams-Watters, Nov 29 2006
Binomial transform of a(n) = n^2 offset 1. a(3)=18. - Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009
a(n) = (1/n) * Sum_{k=0..n} binomial(n,k)*k^3. - Gary Detlefs, Nov 26 2011
For n > 1, a(n) = Sum_{k=0..n-1} Sum_{i=0..n} (k+2) * C(n-2,i). - Wesley Ivan Hurt, Sep 20 2017
a(n) = a(-3-n)*2^(2*n+3), a(n)*(n+3) = -A058645(-3-n)*2^(2*n+3) for all n in Z. - Michael Somos, Apr 19 2019
E.g.f.: (1/2)*exp(2*x)*x*(2 + x). - Stefano Spezia, Aug 17 2019
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=1} 1/a(n) = 128/9 - 56*log(2)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 24*log(3/2) - 80/9. (End)

A008310 Triangle of coefficients of Chebyshev polynomials T_n(x).

Original entry on oeis.org

1, 1, -1, 2, -3, 4, 1, -8, 8, 5, -20, 16, -1, 18, -48, 32, -7, 56, -112, 64, 1, -32, 160, -256, 128, 9, -120, 432, -576, 256, -1, 50, -400, 1120, -1280, 512, -11, 220, -1232, 2816, -2816, 1024, 1, -72, 840, -3584, 6912, -6144, 2048, 13, -364, 2912, -9984, 16640, -13312, 4096
Offset: 0

Views

Author

Keywords

Comments

The row length sequence of this irregular array is A008619(n), n >= 0. Even or odd powers appear in increasing order starting with 1 or x for even or odd row numbers n, respectively. This is the standard triangle A053120 with 0 deleted. - Wolfdieter Lang, Aug 02 2014
Let T* denote the triangle obtained by replacing each number in this triangle by its absolute value. Then T* gives the coefficients for cos(nx) as a polynomial in cos x. - Clark Kimberling, Aug 04 2024

Examples

			Rows are: (1), (1), (-1,2), (-3,4), (1,-8,8), (5,-20,16) etc., since if c = cos(x): cos(0x) = 1, cos(1x) = 1c; cos(2x) = -1+2c^2; cos(3x) = -3c+4c^3, cos(4x) = 1-8c^2+8c^4, cos(5x) = 5c-20c^3+16c^5, etc.
From _Wolfdieter Lang_, Aug 02 2014: (Start)
This irregular triangle a(n,k) begins:
  n\k   0    1     2      3      4      5      6      7 ...
  0:    1
  1:    1
  2:   -1    2
  3:   -3    4
  4:    1   -8     8
  5:    5  -20    16
  6:   -1   18   -48     32
  7:   -7   56  -112     64
  8:    1  -32   160   -256    128
  9:    9 -120   432   -576    256
 10:   -1   50  -400   1120  -1280    512
 11:  -11  220 -1232   2816  -2816   1024
 12:    1  -72   840  -3584   6912  -6144   2048
 13:   13 -364  2912  -9984  16640 -13312   4096
 14:   -1   98 -1568   9408 -26880  39424 -28672   8192
 15:  -15  560 -6048  28800 -70400  92160 -61440  16384
  ...
T(4,x) = 1 - 8*x^2 + 8*x^4, T(5,x) = 5*x - 20*x^3 +16*x^5.
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • E. A. Guilleman, Synthesis of Passive Networks, Wiley, 1957, p. 593.
  • Yaroslav Zolotaryuk, J. Chris Eilbeck, "Analytical approach to the Davydov-Scott theory with on-site potential", Physical Review B 63, p543402, Jan. 2001. The authors write, "Since the algebra of these is 'hyperbolic', contrary to the usual Chebyshev polynomials defined on the interval 0 <= x <= 1, we call the set of functions (21) the hyperbolic Chebyshev polynomials." (This refers to the triangle T* described in Comments.)

Crossrefs

A039991 is a row reversed version, but has zeros which enable the triangle to be seen. Columns/diagonals are A011782, A001792, A001793, A001794, A006974, A006975, A006976 etc.
Reflection of A028297. Cf. A008312, A053112.
Row sums are one. Polynomial evaluations include A001075 (x=2), A001541 (x=3), A001091, A001079, A023038, A011943, A001081, A023039, A001085, A077422, A077424, A097308, A097310, A068203.
Cf. A053120.

Programs

  • Maple
    A008310 := proc(n,m) local x ; coeftayl(simplify(ChebyshevT(n,x),'ChebyshevT'),x=0,m) ; end: i := 0 : for n from 0 to 100 do for m from n mod 2 to n by 2 do printf("%d %d ",i,A008310(n,m)) ; i := i+1 ; od ; od ; # R. J. Mathar, Apr 20 2007
    # second Maple program:
    b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:
    T:= n-> (p-> (d-> seq(coeff(p, x, d-i), i=0..d))(degree(p)))(b(n)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    Flatten[{1, Table[CoefficientList[ChebyshevT[n, x], x], {n, 1, 13}]}]//DeleteCases[#, 0, Infinity]& (* or *) Flatten[{1, Table[Table[((-1)^k*2^(n-2 k-1)*n*Binomial[n-k, k])/(n-k), {k, Floor[n/2], 0, -1}], {n, 1, 13}]}] (* Eugeniy Sokol, Sep 04 2019 *)

Formula

a(n,m) = 2^(m-1) * n * (-1)^((n-m)/2) * ((n+m)/2-1)! / (((n-m)/2)! * m!) if n>0. - R. J. Mathar, Apr 20 2007
From Paul Weisenhorn, Oct 02 2019: (Start)
T_n(x) = 2*x*T_(n-1)(x) - T_(n-2)(x), T_0(x) = 1, T_1(x) = x.
T_n(x) = ((x+sqrt(x^2-1))^n + (x-sqrt(x^2-1))^n)/2. (End)
From Peter Bala, Aug 15 2022: (Start)
T(n,x) = [z^n] ( z*x + sqrt(1 + z^2*(x^2 - 1)) )^n.
Sum_{k = 0..2*n} binomial(2*n,k)*T(k,x) = (2^n)*(1 + x)^n*T(n,x).
exp( Sum_{n >= 1} T(n,x)*t^n/n ) = Sum_{n >= 0} P(n,x)*t^n, where P(n,x) denotes the n-th Legendre polynomial. (End)

Extensions

Additional comments and more terms from Henry Bottomley, Dec 13 2000
Edited: Corrected Cf. A039991 statement. Cf. A053120 added. - Wolfdieter Lang, Aug 06 2014

A081277 Square array of unsigned coefficients of Chebyshev polynomials of the first kind.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 8, 4, 1, 7, 18, 20, 8, 1, 9, 32, 56, 48, 16, 1, 11, 50, 120, 160, 112, 32, 1, 13, 72, 220, 400, 432, 256, 64, 1, 15, 98, 364, 840, 1232, 1120, 576, 128, 1, 17, 128, 560, 1568, 2912, 3584, 2816, 1280, 256, 1, 19, 162, 816, 2688, 6048, 9408, 9984, 6912
Offset: 0

Views

Author

Paul Barry, Mar 16 2003

Keywords

Comments

Formatted as a triangular array, this is [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] (see construction in A084938 ). - Philippe Deléham, Aug 09 2005
Antidiagonal sums are in A025192. - Philippe Deléham, Dec 04 2006
Binomial transform of n-th row of the triangle (followed by zeros) = n-th row of the A142978 array and n-th column of triangle A104698. - Gary W. Adamson, Jul 17 2008
When formatted as a triangle, A038763=fusion of polynomial sequences (x+1)^n and (x+1)^n; see A193722 for the definition of fusion of two polynomial sequences or triangular arrays. Row n of A038763, as a triangle, consists of coefficients of the product (x+1)*(x+2)^n. - Clark Kimberling, Aug 04 2011

Examples

			Rows begin
  1, 1,  2,   4,   8, ...
  1, 3,  8,  20,  48, ...
  1, 5, 18,  56, 160, ...
  1, 7, 32, 120, 400, ...
  1, 9, 50, 220, 840, ...
  ...
As a triangle:
  1;
  1,  1;
  1,  3,  2;
  1,  5,  8,  4;
  1,  7, 18, 20,  8;
		

Crossrefs

Cf. A079628.
Cf. A167580 and A167591. - Johannes W. Meijer, Nov 23 2009
Cf. A053120 (antidiagonals give signed version) and A124182 (skewed version). - Mathias Zechmeister, Jul 26 2022

Programs

  • Mathematica
    (* Program generates triangle A081277 as the self-fusion of Pascal's triangle *)
    z = 8; a = 1; b = 1; c = 1; d = 1;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A081277 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]] (* abs val of A118800 *)
    Factor[w[6, x]]
    (* Clark Kimberling, Aug 04 2011 *)

Formula

T(n, k) = (n+2k)*binomial(n+k-1, k-1)*2^(n-1)/k, k > 0.
T(n, 0) defined by g.f. (1-x)/(1-2x). Other rows are defined by (1-x)/(1-2x)^n.
T(n, 0) = 0 if n < 0, T(0, k) = 0 if k < 0, T(0, 0) = T(1, 0) = 1, T(n, k) = T(n, k-1) + 2*T(n-1, k); for example, 160 = 48 + 2*56 for n = 4 and k = 2. -Philippe Deléham, Aug 12 2005
G.f. of the triangular interpretation: (-1+x*y)/(-1+2*x*y+x). - R. J. Mathar, Aug 11 2015

A124182 A skewed version of triangular array A081277.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 3, 4, 0, 0, 1, 8, 8, 0, 0, 0, 5, 20, 16, 0, 0, 0, 1, 18, 48, 32, 0, 0, 0, 0, 7, 56, 112, 64, 0, 0, 0, 0, 1, 32, 160, 256, 128, 0, 0, 0, 0, 0, 9, 120, 432, 576, 256, 0, 0, 0, 0, 0, 1, 50, 400, 1120, 1280, 512
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2006

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, -1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0,...] where DELTA is the operator defined in A084938. Falling diagonal sums in A052980.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 2;
  0, 0, 3, 4;
  0, 0, 1, 8,  8;
  0, 0, 0, 5, 20, 16;
  0, 0, 0, 1, 18, 48,  32;
  0, 0, 0, 0,  7, 56, 112,  64;
  0, 0, 0, 0,  1, 32, 160, 256,  128;
  0, 0, 0, 0,  0,  9, 120, 432,  576,  256;
  0, 0, 0, 0,  0,  1,  50, 400, 1120, 1280, 512;
		

Crossrefs

Cf. A025192 (column sums). Diagonals include A011782, A001792, A001793, A001794, A006974, A006975, A006976.

Formula

T(0,0)=T(1,1)=1, T(n,k)=0 if n < k or if k < 0, T(n,k) = T(n-2,k-1) + 2*T(n-1,k-1).
Sum_{k=0..n} x^k*T(n,k) = (-1)^n*A090965(n), (-1)^n*A084120(n), (-1)^n*A006012(n), A033999(n), A000007(n), A001333(n), A084059(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively.
Sum_{k=0..floor(n/2)} T(n-k,k) = Fibonacci(n-1) = A000045(n-1).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 respectively. - Philippe Deléham, Dec 26 2007
Sum_{k=0..n} T(n,k)*(-x)^(n-k) = A011782(n), A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x= 0,1,2,3,4,5,6 respectively. - Philippe Deléham, Nov 14 2008
G.f.: (1-y*x)/(1-2y*x-y*x^2). - Philippe Deléham, Dec 04 2011
Sum_{k=0..n} T(n,k)^2 = A002002(n) for n > 0. - Philippe Deléham, Dec 04 2011

A200139 Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 8, 5, 1, 8, 20, 18, 7, 1, 16, 48, 56, 32, 9, 1, 32, 112, 160, 120, 50, 11, 1, 64, 256, 432, 400, 220, 72, 13, 1, 128, 576, 1120, 1232, 840, 364, 98, 15, 1, 256, 1280, 2816, 3584, 2912, 1568, 560, 128, 17, 1, 512, 2816, 6912, 9984, 9408, 6048, 2688, 816, 162, 19, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 13 2011

Keywords

Comments

Riordan array ((1-x)/(1-2x),x/(1-2x)).
Product A097805*A007318 as infinite lower triangular arrays.
Product A193723*A130595 as infinite lower triangular arrays.
T(n,k) is the number of ways to place n unlabeled objects into any number of labeled bins (with at least one object in each bin) and then designate k of the bins. - Geoffrey Critzer, Nov 18 2012
Apparently, rows of this array are unsigned diagonals of A028297. - Tom Copeland, Oct 11 2014
Unsigned A118800, so my conjecture above is true. - Tom Copeland, Nov 14 2016

Examples

			Triangle begins:
   1
   1,   1
   2,   3,   1
   4,   8,   5,   1
   8,  20,  18,   7,   1
  16,  48,  56,  32,   9,   1
  32, 112, 160, 120,  50,  11,   1
		

Crossrefs

Cf. A118800 (signed version), A081277, A039991, A001333 (antidiagonal sums), A025192 (row sums); diagonals: A000012, A005408, A001105, A002492, A072819l; columns: A011782, A001792, A001793, A001794, A006974, A006975, A006976.

Programs

  • Mathematica
    nn=15;f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[(1-x)/(1-2x-y x) ,{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Nov 18 2012 *)

Formula

T(n,k) = 2*T(n-1,k)+T(n-1,k-1) with T(0,0)=T(1,0)=T(1,1)=1 and T(n,k)=0 for k<0 or for n
T(n,k) = A011782(n-k)*A135226(n,k) = 2^(n-k)*(binomial(n,k)+binomial(n-1,k-1))/2.
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A011782(n), A025192(n), A002001(n), A005054(n), A052934(n), A055272(n), A055274(n), A055275(n), A052268(n), A055276(n), A196731(n) for n=-1,0,1,2,3,4,5,6,7,8,9,10 respectively.
G.f.: (1-x)/(1-(2+y)*x).
T(n,k) = Sum_j>=0 T(n-1-j,k-1)*2^j.
T = A007318*A059260, so the row polynomials of this entry are given umbrally by p_n(x) = (1 + q.(x))^n, where q_n(x) are the row polynomials of A059260 and (q.(x))^k = q_k(x). Consequently, the e.g.f. is exp[tp.(x)] = exp[t(1+q.(x))] = e^t exp(tq.(x)) = [1 + (x+1)e^((x+2)t)]/(x+2), and p_n(x) = (x+1)(x+2)^(n-1) for n > 0. - Tom Copeland, Nov 15 2016
T^(-1) = A130595*(padded A130595), differently signed A118801. Cf. A097805. - Tom Copeland, Nov 17 2016
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the rational function (1 + x)/(1 + 2*x) * (1 + 2*x)^n about 0. For example, for n = 4, (1 + x)/(1 + 2*x) * (1 + 2*x)^4 = (8*x^4 + 20*x*3 + 18*x^2 + 7*x + 1) + O(x^5). - Peter Bala, Feb 24 2018

A201701 Riordan triangle ((1-x)/(1-2*x), x^2/(1-2*x)).

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 4, 3, 0, 0, 8, 8, 1, 0, 0, 16, 20, 5, 0, 0, 0, 32, 48, 18, 1, 0, 0, 0, 64, 112, 56, 7, 0, 0, 0, 0, 128, 256, 160, 32, 1, 0, 0, 0, 0, 256, 576, 432, 120, 9, 0, 0, 0, 0, 0, 512, 1280, 1120, 400, 50, 1, 0, 0, 0, 0, 0
Offset: 0

Author

Philippe Deléham, Dec 03 2011

Keywords

Comments

Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (0,1,-1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Skewed version of triangle in A200139.
Triangle without zeros: A207537.
For the version with negative odd numbered columns, which is Riordan ((1-x)/(1-2*x), -x^2/(1-2*x)) see comments on A028297 and A039991. - Wolfdieter Lang, Aug 06 2014
This is an example of a stretched Riordan array in the terminology of Section 2 of Corsani et al. - Peter Bala, Jul 14 2015

Examples

			The triangle T(n,k) begins:
  n\k      0     1     2     3     4    5   6  7 8 9 10 11 ...
  0:       1
  1:       1     0
  2:       2     1     0
  3:       4     3     0     0
  4:       8     8     1     0     0
  5:      16    20     5     0     0    0
  6:      32    48    18     1     0    0   0
  7:      64   112    56     7     0    0   0  0
  8:     128   256   160    32     1    0   0  0 0
  9:     256   576   432   120     9    0   0  0 0 0
  10:    512  1280  1120   400    50    1   0  0 0 0  0
  11:   1024  2816  2816  1232   220   11   0  0 0 0  0  0
  ...  reformatted and extended. - _Wolfdieter Lang_, Aug 06 2014
		

Crossrefs

Diagonals sums are in A052980.
Cf. A028297, A081265, A124182, A131577, A039991 (zero-columns deleted, unsigned and zeros appended).
Cf. A028297 (signed version, zeros deleted). Cf. A034839.

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[(1 - #)/(1 - 2 #)&, #^2/(1 - 2 #)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)

Formula

T(n,k) = 2*T(n-1,k) + T(n-2,k-1) with T(0,0) = T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 for k<0 or for n
Sum_{k=0..n} T(n,k)^2 = A002002(n) for n>0.
Sum_{k=0..n} T(n,k)*x^k = A138229(n), A006495(n), A138230(n), A087455(n), A146559(n), A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 respectively.
G.f.: (1-x)/(1-2*x-y*x^2). - Philippe Deléham, Mar 03 2012
From Peter Bala, Jul 14 2015: (Start)
Factorizes as A034839 * A007318 = (1/(1 - x), x^2/(1 - x)^2) * (1/(1 - x), x/(1 - x)) as a product of Riordan arrays.
T(n,k) = Sum_{i = k..floor(n/2)} binomial(n,2*i) *binomial(i,k). (End)

Extensions

Name changed, keyword:easy added, crossrefs A028297 and A039991 added, and g.f. corrected by Wolfdieter Lang, Aug 06 2014
Showing 1-10 of 17 results. Next