cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001847 Crystal ball sequence for 5-dimensional cubic lattice.

Original entry on oeis.org

1, 11, 61, 231, 681, 1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047, 335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409, 2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793, 11326283
Offset: 0

Views

Author

Keywords

Comments

Number of nodes degree 10 in virtual, optimal chordal graphs of diameter d(G)=n - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Mar 07 2002
If Y_i (i=1,2,3,4,5) are 2-blocks of a (n+5)-set X then a(n-5) is the number of 10-subsets of X intersecting each Y_i (i=1,2,3,4,5). - Milan Janjic, Oct 28 2007
Equals binomial transform of [1, 10, 40, 80, 80, 32, 0, 0, 0, ...] where (1, 10, 40, 80, 80, 32) = row 5 of the Chebyshev triangle A013609. - Gary W. Adamson, Jul 19 2008
a(n) is the number of points in Z^5 that are L1 (Manhattan) distance <= n from any given point. Equivalently, due to a symmetry that is easier to see in the Delannoy numbers array (A008288), as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= 5 from any given point. - Shel Kaphan, Jan 02 2023

Examples

			a(5)=1683, (4*5^5 + 10*5^4 + 40*5^3 + 50*5^2 + 46*5 + 15)/15 = (12500 + 6250 + 5000 + 230 + 15)/15 = 25245/15 = 1683.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 231.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A240876.
Row/column 5 of A008288.

Programs

  • Maple
    for n from 1 to k do eval((4*n^5+10*n^4+40*n^3+50*n^2+46*n+15)/15) od;
    A001847:=(z+1)**5/(z-1)**6; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(z+1)^5/(z-1)^6, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
    Table[((((4 n + 10) n + 40) n + 50) n + 46) n/15 + 1, {n, 0, 30}] (* Robert A. Russell, Jul 02 2025 *)

Formula

G.f.: (1+x)^5 /(1-x)^6.
a(n) = (4*n^5+10*n^4+40*n^3+50*n^2+46*n+15)/15. - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Mar 07 2002
a(n) = Sum_{k=0..min(5,n)} 2^k * binomial(5,k)* binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
E.g.f.: exp(x)*(15 + 150*x + 300*x^2 + 200*x^3 + 50*x^4 + 4*x^5)/15. - Stefano Spezia, Mar 17 2024
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = 47/60 - log(2) = (1 - 1/2 + 1/3 - 1/4 + 1/5) - log(2). - Peter Bala, Mar 23 2024