A001847 Crystal ball sequence for 5-dimensional cubic lattice.
1, 11, 61, 231, 681, 1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047, 335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409, 2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793, 11326283
Offset: 0
Examples
a(5)=1683, (4*5^5 + 10*5^4 + 40*5^3 + 50*5^2 + 46*5 + 15)/15 = (12500 + 6250 + 5000 + 230 + 15)/15 = 25245/15 = 1683.
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 231.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- D. Bump, K. Choi, P. Kurlberg, and J. Vaaler, A local Riemann hypothesis, I pages 16 and 17
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Milan Janjic, Two Enumerative Functions. [Broken link; WayBackMachine archive]
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973).
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279.
- Index entries for crystal ball sequences
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Maple
for n from 1 to k do eval((4*n^5+10*n^4+40*n^3+50*n^2+46*n+15)/15) od; A001847:=(z+1)**5/(z-1)**6; # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
CoefficientList[Series[(z+1)^5/(z-1)^6, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *) Table[((((4 n + 10) n + 40) n + 50) n + 46) n/15 + 1, {n, 0, 30}] (* Robert A. Russell, Jul 02 2025 *)
Formula
G.f.: (1+x)^5 /(1-x)^6.
a(n) = (4*n^5+10*n^4+40*n^3+50*n^2+46*n+15)/15. - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Mar 07 2002
a(n) = Sum_{k=0..min(5,n)} 2^k * binomial(5,k)* binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
E.g.f.: exp(x)*(15 + 150*x + 300*x^2 + 200*x^3 + 50*x^4 + 4*x^5)/15. - Stefano Spezia, Mar 17 2024
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = 47/60 - log(2) = (1 - 1/2 + 1/3 - 1/4 + 1/5) - log(2). - Peter Bala, Mar 23 2024
Comments