A001858 Number of forests of trees on n labeled nodes.
1, 1, 2, 7, 38, 291, 2932, 36961, 561948, 10026505, 205608536, 4767440679, 123373203208, 3525630110107, 110284283006640, 3748357699560961, 137557910094840848, 5421179050350334929, 228359487335194570528, 10239206473040881277575, 486909744862576654283616
Offset: 0
Examples
From _Gus Wiseman_, Apr 29 2024: (Start) Edge-sets of the a(4) = 38 forests: {} {12} {12,13} {12,13,14} {13} {12,14} {12,13,24} {14} {12,23} {12,13,34} {23} {12,24} {12,14,23} {24} {12,34} {12,14,34} {34} {13,14} {12,23,24} {13,23} {12,23,34} {13,24} {12,24,34} {13,34} {13,14,23} {14,23} {13,14,24} {14,24} {13,23,24} {14,34} {13,23,34} {23,24} {13,24,34} {23,34} {14,23,24} {24,34} {14,23,34} {14,24,34} (End)
References
- B. Bollobas, Modern Graph Theory, Springer, 1998, p. 290.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..388 (first 101 terms from T. D. Noe)
- J. E. Bartels, J. Mount, and D. J. A. Welsh, The polytope of win vectors. Annals of Combinatorics 1, 1-15 (1997). https://doi.org/10.1007/BF02558460
- David Callan, A Combinatorial Derivation of the Number of Labeled Forests, J. Integer Seqs., Vol. 6, 2003.
- Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions, thesis, 2002.o
- Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions, thesis, 2002.
- Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions, thesis, 2002 [Local copy, with permission]
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 132.
- Samuele Giraudo, Combalgebraic structures on decorated cliques, Formal Power Series and Algebraic Combinatorics, Séminaire Lotharingien de Combinatoire, 78B.15, 2017, p. 7, arXiv:1709.08416 [math.CO], 2017.
- Anton Izosimov, Matrix polynomials, generalized Jacobians, and graphical zonotopes, arXiv:1506.05179 [math.AG], 2015.
- Qipeng Kuang, Ondřej Kuželka, Yuanhong Wang, and Yuyi Wang, Bridging Weighted First Order Model Counting and Graph Polynomials, arXiv:2407.11877 [cs.LO], 2024. See pp. 32-33.
- Arun P. Mani and Rebecca J. Stones, Congruences for weighted number of labeled forests, INTEGERS 16 (2016). #A17.
- J. Pitman, Coalescent Random Forests, J. Combin. Theory, A85 (1999), 165-193.
- J. Riordan, Forests of labeled trees, J. Combin. Theory, 5 (1968), 90-103.
- J. Riordan, Letter to N. J. A. Sloane, Oct 19 1970
- J. Riordan, Letter to N. J. A. Sloane, Nov 10 1975
- John Riordan and N. J. A. Sloane, Correspondence, 1974
- N. J. A. Sloane, Letter to J. Riordan, Nov. 1970
- R. Stanley, Decompositions of rational convex polytopes, Ann. Discrete Math 6.6 (1980): 333-342.
- L. Takacs, On the number of distinct forests, SIAM J. Discrete Math., 3 (1990), 574-581.
- E. M. Wright, A relationship between two sequences, Proc. London Math. Soc. (3) 17 (1967) 296-304.
- Index entries for sequences related to forests
Programs
-
Maple
exp(x+x^2+add(n^(n-2)*x^n/n!, n=3..50)); # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add( binomial(n-1, j-1)*j^(j-2)*a(n-j), j=1..n)) end: seq(a(n), n=0..20); # Alois P. Heinz, Sep 15 2008 # third Maple program: F:= exp(-LambertW(-x)*(1+LambertW(-x)/2)): S:= series(F,x,51): seq(coeff(S,x,j)*j!, j=0..50); # Robert Israel, May 21 2015
-
Mathematica
nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[Exp[t-t^2/2],{x,0,nn}],x] (* Geoffrey Critzer, Sep 05 2012 *) nmax = 20; CoefficientList[Series[-LambertW[-x]/(x*E^(LambertW[-x]^2/2)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 19 2019 *)
-
PARI
a(n)=if(n<0,0,sum(m=0,n,sum(j=0,m,binomial(m,j)*binomial(n-1,n-m-j)*n^(n-m-j)*(m+j)!/(-2)^j)/m!)) /* Michael Somos, Aug 22 2002 */
Formula
E.g.f.: exp( Sum_{n>=1} n^(n-2)*x^n/n! ). This implies (by a theorem of Wright) that a(n) ~ exp(1/2)*n^(n-2). - N. J. A. Sloane, May 12 2008 [Corrected by Philippe Flajolet, Aug 17 2008]
E.g.f.: exp(T - T^2/2), where T = T(x) = Sum_{n>=1} n^(n-1)*x^n/n! is Euler's tree function (see A000169). - Len Smiley, Dec 12 2001
Shifts 1 place left under the hyperbinomial transform (cf. A088956). - Paul D. Hanna, Nov 03 2003
a(0) = 1, a(n) = Sum_{j=0..n-1} C(n-1,j) (j+1)^(j-1) a(n-1-j) if n>0. - Alois P. Heinz, Sep 15 2008
Extensions
More terms from Michael Somos, Aug 22 2002
Comments