cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002019 a(n) = a(n-1) - (n-1)(n-2)a(n-2).

Original entry on oeis.org

1, 1, 1, -1, -7, 5, 145, -5, -6095, -5815, 433025, 956375, -46676375, -172917875, 7108596625, 38579649875, -1454225641375, -10713341611375, 384836032842625, 3663118565923375, -127950804666254375, -1519935859717136875
Offset: 0

Views

Author

Keywords

References

  • Dwight, Tables of Integrals ..., Eq. 552.5, page 133.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections are A102058 and A102059.
Cf. A006228.
Row sums of signed triangle A049218.
Cf. A000246.

Programs

  • Haskell
    a002019 n = a002019_list !! n
    a002019_list = 1 : 1 : zipWith (-)
       (tail a002019_list) (zipWith (*) a002019_list a002378_list)
    -- Reinhard Zumkeller, Feb 27 2012
    
  • Magma
    I:=[1,1]; [1] cat [ n le 2 select I[n] else Self(n-1)-(n^2-3*n+2)*Self(n-2): n in [1..35]]; // Vincenzo Librandi, May 02 2015
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==1,a[n]==a[n-1]-(n-1)(n-2)a[n-2]}, a[n],{n,30}] (* Harvey P. Dale, May 02 2011 *)
    CoefficientList[Series[E^(ArcTan[x]),{x,0,20}],x]*Range[0,20]! (* Vaclav Kotesovec, Nov 06 2014 *)
  • Maxima
    a(n):=n!*sum(if oddp(m+n) then 0 else (-1)^((3*n+m)/2)/(2^m*m!)*sum(2^i*binomial(n-1,i-1)*m!/i!*stirling1(i,m),i,m,n),m,1,n); /* Vladimir Kruchinin, Aug 05 2010 */
    

Formula

E.g.f.: exp(arctan(x)).
a(n) = n!*sum(if oddp(m+n) then 0 else (-1)^((3*n+m)/2)/(2^m*m!)*sum(2^i*binomial(n-1,i-1)*m!/i!*stirling1(i,m),i,m,n),m,1,n), n>0. - Vladimir Kruchinin, Aug 05 2010
E.g.f.: exp(arctan(x)) = 1 + 2x/(H(0)-x); H(k) = 4k + 2 + x^2*(4k^2 + 8k + 5)/H(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2011
a(n+1) = a(n) - a(n-1) * A002378(n-2). - Reinhard Zumkeller, Feb 27 2012
E.g.f.: -2i*(B((1+ix)/2; (2-i)/2, (2+i)/2) - B(1/2; (2-i)/2, (2+i)/2)), for a(0)=0, a(1)=a(2)=a(3)=1, B(x;a,b) is the incomplete Beta function. - G. C. Greubel, May 01 2015
a(n) = i^n*n!*Sum_{r+s=n} (-1)^s*binomial(-i/2, r)*binomial(i/2,s) where i is the imaginary unit. See the Fib. Quart. link. - Michel Marcus, Jan 22 2017

Extensions

More terms from Herman P. Robinson